These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1739727)

  • 1. Differential permeability for lipophilic compounds in uncoupler-resistant cells of Escherichia coli.
    Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1992 Jan; 1099(1):45-50. PubMed ID: 1739727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupler-induced relocation of elongation factor Tu to the outer membrane in an uncoupler-resistant mutant of Escherichia coli.
    Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1986 Mar; 856(1):50-8. PubMed ID: 3513835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct phases of the fluorescence response of the lipophilic probe N-phenyl-1-naphthylamine in intact cells and membrane vesicles of Escherichia coli.
    Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1987 Dec; 894(3):499-506. PubMed ID: 2891377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli mutants resistant to uncouplers of oxidative phosphorylation.
    Jones MR; Beechey RB
    J Gen Microbiol; 1987 Oct; 133(10):2759-66. PubMed ID: 3329677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of energization of uptake of the fluorescent dye 2-(4-dimethylaminostyryl)-1-ethylpyridinium cation [DMP+] into an acrA strain of Escherichia coli.
    Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1992 Jan; 1099(1):51-6. PubMed ID: 1739728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncoupler resistance in Escherichia coli: the role of cellular respiration.
    Quirk PG; Jones MR; Haworth RS; Beechey RB; Campbell ID
    J Gen Microbiol; 1989 Oct; 135(10):2577-87. PubMed ID: 2698912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of N-phenyl-1-naphthylamine as a probe of membrane energy state in Escherichia coli.
    Cramer WA; Postma PW; Helgerson SL
    Biochim Biophys Acta; 1976 Dec; 449(3):401-11. PubMed ID: 793617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial resistance to uncouplers.
    Lewis K; Naroditskaya V; Ferrante A; Fokina I
    J Bioenerg Biomembr; 1994 Dec; 26(6):639-46. PubMed ID: 7721726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupler resistance in E. coli Tuv and Cuv is due to the exclusion of uncoupler by the outer membrane.
    Haworth RS; Jensen PR; Michelsen O; Wyatt JA; Brealey CJ; Beechey RB
    Biochim Biophys Acta; 1990 Aug; 1019(1):67-72. PubMed ID: 2118805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of peptidoglycan hydrolase activity in vivo and in vitro by energy uncouplers in Escherichia coli.
    Rodionov DG; Ishiguro EE
    Microb Drug Resist; 1996; 2(1):131-4. PubMed ID: 9158735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane bioenergetic parameters in uncoupler-resistant mutants of Bacillus megaterium.
    Decker SJ; Lang DR
    J Biol Chem; 1978 Oct; 253(19):6738-43. PubMed ID: 29041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonyl cyanide-m-chlorophenyl hydrazone-resistant Escherichia coli mutant that exhibits a temperature-sensitive unc phenotype.
    Ito M; Ohnishi Y; Itoh S; Nishimura M
    J Bacteriol; 1983 Jan; 153(1):310-5. PubMed ID: 6217194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins.
    Li XZ; Nikaido H; Williams KE
    J Bacteriol; 1997 Oct; 179(19):6127-32. PubMed ID: 9324262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of efflux systems and the cell envelope in fluorescence changes of the lipophilic cation 2-(4-dimethylaminostyryl)-1-ethylpyridinium in Escherichia coli.
    Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1996 Jan; 1278(2):205-12. PubMed ID: 8593278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutants of Bacillus megaterium resistant to uncouplers of oxidative phosphorylation.
    Decker SJ; Lang DR
    J Biol Chem; 1977 Sep; 252(17):5936-8. PubMed ID: 408344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.
    MacLeod RA; Wisse GA; Stejskal FL
    J Bacteriol; 1988 Sep; 170(9):4330-7. PubMed ID: 3045092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli mutants resistant to uncouplers of oxidative phosphorylation.
    Ito M; Ohnishi Y
    Microbiol Immunol; 1982; 26(11):1079-84. PubMed ID: 6762486
    [No Abstract]   [Full Text] [Related]  

  • 18. Isolation and characterization of uncoupler-resistant mutants of Bacillus subtilis.
    Guffanti AA; Clejan S; Falk LH; Hicks DB; Krulwich TA
    J Bacteriol; 1987 Oct; 169(10):4469-78. PubMed ID: 2820927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in interfacial potentials induced by carbonylcyanide phenylhydrazone uncouplers: possible role in inhibition of mitochondrial oxygen consumption and other transport processes.
    Reyes J; Benos DJ
    Membr Biochem; 1984; 5(3):243-68. PubMed ID: 6748952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in E. coli cell envelope structure caused by uncouplers of active transport and colicin E1.
    Helgerson SL; Cramer WA
    J Supramol Struct; 1976; 5(3):291-308. PubMed ID: 828690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.