These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 17397302)
1. Breaking strength and elasticity of synthetic absorbable suture materials incubated in phosphate-buffered saline solution, milk, and milk contaminated with Streptococcus agalactiae. Nichols S; Anderson DE Am J Vet Res; 2007 Apr; 68(4):441-5. PubMed ID: 17397302 [TBL] [Abstract][Full Text] [Related]
2. Elasticity and breaking strength of synthetic suture materials incubated in various equine physiological and pathological solutions. Kearney CM; Buckley CT; Jenner F; Moissonnier P; Brama PA Equine Vet J; 2014 Jul; 46(4):494-8. PubMed ID: 24004343 [TBL] [Abstract][Full Text] [Related]
3. Tensile strength of absorbable suture materials: in vitro analysis of the effects of pH and bacteria. Chung E; McPherson N; Grant A J Surg Educ; 2009; 66(4):208-11. PubMed ID: 19896625 [TBL] [Abstract][Full Text] [Related]
4. [Polydioxanon (PDS)--a new monofilar synthetic, absorbable suture material. Tensile strength studies in a controlled clinical trial on the large intestine of humans and physical parameters in in vitro tests]. Lündstedt B; Thiede A Chirurg; 1983 Feb; 54(2):103-7. PubMed ID: 6406180 [TBL] [Abstract][Full Text] [Related]
5. Comparative study on biocompatibility and absorption times of three absorbable monofilament suture materials (Polydioxanone, Poliglecaprone 25, Glycomer 631). Molea G; Schonauer F; Bifulco G; D'Angelo D Br J Plast Surg; 2000 Mar; 53(2):137-41. PubMed ID: 10878837 [TBL] [Abstract][Full Text] [Related]
6. Knotting abilities of a new absorbable monofilament suture: poliglecaprone 25 (Monocryl). Trimbos JB; Niggebrugge A; Trimbos R; Van Rijssel EJ Eur J Surg; 1995 May; 161(5):319-22. PubMed ID: 7662774 [TBL] [Abstract][Full Text] [Related]
7. In vivo and in vitro degradation of monofilament absorbable sutures, PDS and Maxon. Metz SA; Chegini N; Masterson BJ Biomaterials; 1990 Jan; 11(1):41-5. PubMed ID: 2105750 [TBL] [Abstract][Full Text] [Related]
8. Mechanical comparison of 10 suture materials before and after in vivo incubation. Greenwald D; Shumway S; Albear P; Gottlieb L J Surg Res; 1994 Apr; 56(4):372-7. PubMed ID: 8152233 [TBL] [Abstract][Full Text] [Related]
9. Effect of human pancreatic juice and bile on the tensile strength of suture materials. Muftuoglu MA; Ozkan E; Saglam A Am J Surg; 2004 Aug; 188(2):200-3. PubMed ID: 15249253 [TBL] [Abstract][Full Text] [Related]
10. Tensile properties of synthetic, absorbable monofilament suture materials before and after incubation in phosphate-buffered saline. Tobias KM; Kidd CE; Mulon PY; Zhu X Vet Surg; 2020 Apr; 49(3):550-560. PubMed ID: 31599002 [TBL] [Abstract][Full Text] [Related]
11. Mechanical and handling properties of braided polyblend polyethylene sutures in comparison to braided polyester and monofilament polydioxanone sutures. Wüst DM; Meyer DC; Favre P; Gerber C Arthroscopy; 2006 Nov; 22(11):1146-53. PubMed ID: 17084288 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the tensile strengths of four monofilament absorbable suture materials after immersion in canine urine with or without bacteria. Greenberg CB; Davidson EB; Bellmer DD; Morton RJ; Payton ME Am J Vet Res; 2004 Jun; 65(6):847-53. PubMed ID: 15198227 [TBL] [Abstract][Full Text] [Related]
13. [Tendon sutures with a new monofilament synthetic absorbable suture material (PDS-suture of 6-0 strength). Results of animal experiments]. Albers W; Geldmacher J; Giedl H; Beyer W Chirurg; 1982 Mar; 53(3):168-71. PubMed ID: 6802585 [TBL] [Abstract][Full Text] [Related]
14. Effect of human urine on the tensile strength of sutures used for hypospadias surgery. Kerstein RL; Sedaghati T; Seifalian AM; Kang N J Plast Reconstr Aesthet Surg; 2013 Jun; 66(6):835-8. PubMed ID: 23558021 [TBL] [Abstract][Full Text] [Related]
15. The properties of damaged and undamaged suture used in metal and bioabsorbable anchors: an in vitro study. Wright PB; Budoff JE; Yeh ML; Kelm ZS; Luo ZP Arthroscopy; 2007 Jun; 23(6):655-61. PubMed ID: 17560481 [TBL] [Abstract][Full Text] [Related]
16. The effect of medical grade honey on tensile strength, strain, and Young's modulus of synthetic absorbable suture material used in equine surgery. Madsen K; Martens A; Haspeslagh M; Meulyzer M; Gustafsson K Equine Vet J; 2024 Jan; 56(1):193-201. PubMed ID: 37326536 [TBL] [Abstract][Full Text] [Related]
17. In vitro comparison of mechanical and degradation properties of equivalent absorbable suture materials from two different manufacturers. de la Puerta B; Parsons KJ; Draper ER; Moores AL; Moores AP Vet Surg; 2011 Feb; 40(2):223-7. PubMed ID: 21223313 [TBL] [Abstract][Full Text] [Related]
18. Breaking strength and diameter of absorbable sutures after in vivo exposure in the rat. Outlaw KK; Vela AR; O'Leary JP Am Surg; 1998 Apr; 64(4):348-54. PubMed ID: 9544148 [TBL] [Abstract][Full Text] [Related]
19. Impact of Fluoridated Mouthwashes on Strength and Durability of Three Different Synthetic Absorbable Suturing Materials: An Awasthi N; Ramanna PK; Lahiri B; Das A; Ravi RV; Mishra D J Contemp Dent Pract; 2022 Apr; 23(4):431-436. PubMed ID: 35945837 [TBL] [Abstract][Full Text] [Related]
20. Resistance and stability of a new method for bonding biological materials using sutures and biological adhesives. Paéz JM; Sanmartín AC; Herrero EJ; Millan I; Cordon A; Rocha A; Maestro MA; Téllez G; Castillo-Olivares JL J Biomater Appl; 2005 Jan; 19(3):215-36. PubMed ID: 15613381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]