BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 17397474)

  • 1. A marine bacterial adhesion microplate test using the DAPI fluorescent dye: a new method to screen antifouling agents.
    Leroy C; Delbarre-Ladrat C; Ghillebaert F; Rochet MJ; Compère C; Combes D
    Lett Appl Microbiol; 2007 Apr; 44(4):372-8. PubMed ID: 17397474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium.
    Leroy C; Delbarre C; Ghillebaert F; Compere C; Combes D
    Biofouling; 2008; 24(1):11-22. PubMed ID: 18058451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of subtilisin on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers.
    Leroy C; Delbarre C; Ghillebaert F; Compere C; Combes D
    J Appl Microbiol; 2008 Sep; 105(3):791-9. PubMed ID: 18489561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiadhesive action of a marine microbial surfactant.
    Das P; Mukherjee S; Sen R
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):183-6. PubMed ID: 19285837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifouling activity of commercial biocides vs. natural and natural-derived products assessed by marine bacteria adhesion bioassay.
    Camps M; Briand JF; Guentas-Dombrowsky L; Culioli G; Bazire A; Blache Y
    Mar Pollut Bull; 2011 May; 62(5):1032-40. PubMed ID: 21414639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anti-biofilm activity secreted by a marine Pseudoalteromonas strain.
    Klein GL; Soum-Soutéra E; Guede Z; Bazire A; Compère C; Dufour A
    Biofouling; 2011 Sep; 27(8):931-40. PubMed ID: 21895460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm formation by Pseudoalteromonas ruthenica and its removal by chlorine.
    Saravanan P; Nancharaiah YV; Venugopalan VP; Rao TS; Jayachandran S
    Biofouling; 2006; 22(5-6):371-81. PubMed ID: 17178570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125.
    Papa R; Parrilli E; Sannino F; Barbato G; Tutino ML; Artini M; Selan L
    Res Microbiol; 2013 Jun; 164(5):450-6. PubMed ID: 23411371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial materials research applied to the development of new surface coatings III. Utilisation of a high-throughput multiwell plate screening method to rapidly assess bacterial biofilm retention on antifouling surfaces.
    Stafslien S; Daniels J; Chisholm B; Christianson D
    Biofouling; 2007; 23(1-2):37-44. PubMed ID: 17453727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphenolic beverages reduce initial bacterial adherence to enamel in situ.
    Hannig C; Sorg J; Spitzmüller B; Hannig M; Al-Ahmad A
    J Dent; 2009 Jul; 37(7):560-6. PubMed ID: 19394124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser impact assessment in a biofilm-forming bacterium Pseudoalteromonas carrageenovora using a flow cytometric system.
    Nandakumar K; Obika H; Shinozaki T; Ooie T; Utsumi A; Yano T
    Biotechnol Bioeng; 2003 May; 82(4):399-402. PubMed ID: 12632396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms.
    Dusane DH; Nancharaiah YV; Zinjarde SS; Venugopalan VP
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):242-8. PubMed ID: 20688490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of a biocide and a surfactant on the detachment of Pseudomonas fluorescens from glass surfaces.
    Simões M; Simões LC; Cleto S; Pereira MO; Vieira MJ
    Int J Food Microbiol; 2008 Feb; 121(3):335-41. PubMed ID: 18155793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial activity and QSAR of chalcones against biofilm-producing bacteria isolated from marine waters.
    Sivakumar PM; Prabhawathi V; Doble M
    SAR QSAR Environ Res; 2010 Apr; 21(3-4):247-63. PubMed ID: 20544550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the primary bacterial microfouling layer on antifouling and fouling release coatings in temperate and tropical environments in Eastern Australia.
    Molino PJ; Childs S; Eason Hubbard MR; Carey JM; Burgman MA; Wetherbee R
    Biofouling; 2009; 25(2):149-62. PubMed ID: 19031306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of bacterial adhesion induced by the substrate stiffness.
    Guégan C; Garderes J; Le Pennec G; Gaillard F; Fay F; Linossier I; Herry JM; Fontaine MN; Réhel KV
    Colloids Surf B Biointerfaces; 2014 Feb; 114():193-200. PubMed ID: 24189194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of bromotyramine analogues as antifouling compounds against marine bacteria.
    Andjouh S; Blache Y
    Biofouling; 2016 Sep; 32(8):871-81. PubMed ID: 27450150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial activities of anthozoan corals on some marine microfoulers.
    Wilsanand V; Wagh AB; Bapuji M
    Microbios; 1999; 99(394):137-45. PubMed ID: 10581726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Cistus-tea on bacterial colonization and enzyme activities of the in situ pellicle.
    Hannig C; Spitzmüller B; Al-Ahmad A; Hannig M
    J Dent; 2008 Jul; 36(7):540-5. PubMed ID: 18468764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants.
    Xu Q; Barrios CA; Cutright T; Zhang Newby BM
    Environ Toxicol; 2005 Oct; 20(5):467-74. PubMed ID: 16161071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.