BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17397793)

  • 1. The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy.
    Wu Y; Campos SK; Lopez GP; Ozbun MA; Sklar LA; Buranda T
    Anal Biochem; 2007 May; 364(2):180-92. PubMed ID: 17397793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic characterization of streptavidin functionalized quantum dots.
    Wu Y; Lopez GP; Sklar LA; Buranda T
    Anal Biochem; 2007 May; 364(2):193-203. PubMed ID: 17368555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dots for quantitative flow cytometry.
    Buranda T; Wu Y; Sklar LA
    Methods Mol Biol; 2011; 699():67-84. PubMed ID: 21116979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptides, antibodies, and FRET on beads in flow cytometry: A model system using fluoresceinated and biotinylated beta-endorphin.
    Buranda T; Lopez GP; Keij J; Harris R; Sklar LA
    Cytometry; 1999 Sep; 37(1):21-31. PubMed ID: 10451503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots.
    Swift JL; Heuff R; Cramb DT
    Biophys J; 2006 Feb; 90(4):1396-410. PubMed ID: 16299079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasible and quantitative encoding method for microbeads with multicolor quantum dots.
    Wang HQ; Huang ZL; Liu TC; Wang JH; Cao YC; Hua XF; Li XQ; Zhao YD
    J Fluoresc; 2007 Mar; 17(2):133-8. PubMed ID: 17286204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry.
    Gao X; Nie S
    Anal Chem; 2004 Apr; 76(8):2406-10. PubMed ID: 15080756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.
    Mason JN; Tomlinson ID; Rosenthal SJ; Blakely RD
    Methods Mol Biol; 2005; 303():35-50. PubMed ID: 15923673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and application of quantum dot-tagged fluorescent microbeads.
    Ma Q; Wang C; Su X
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1138-49. PubMed ID: 18468113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo imaging using quantum-dot-conjugated probes.
    S Lidke D; Nagy P; J Arndt-Jovin D
    Curr Protoc Cell Biol; 2007 Sep; Chapter 25():Unit 25.1. PubMed ID: 18228511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Dot-Based Luminescent Oxygen Channeling Assay for Potential Application in Homogeneous Bioassays.
    Zhuang SH; Guo XX; Wu YS; Chen ZH; Chen Y; Ren ZQ; Liu TC
    J Fluoresc; 2016 Jan; 26(1):317-22. PubMed ID: 26563227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of epitope-tagged proteins in flow cytometry: fluorescence resonance energy transfer-based assays on beads with femtomole resolution.
    Buranda T; Lopez GP; Simons P; Pastuszyn A; Sklar LA
    Anal Biochem; 2001 Nov; 298(2):151-62. PubMed ID: 11700971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors.
    Lidke DS; Nagy P; Jovin TM; Arndt-Jovin DJ
    Methods Mol Biol; 2007; 374():69-79. PubMed ID: 17237530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular uptake of fluorescent labelled biotin-streptavidin microspheres.
    Bradley M; Alexander L; Sanchez-Martin RM
    J Fluoresc; 2008; 18(3-4):733-9. PubMed ID: 18330682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads.
    Hoffman RA; Wang L; Bigos M; Nolan JP
    Cytometry A; 2012 Sep; 81(9):785-96. PubMed ID: 22915363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking individual proteins in living cells using single quantum dot imaging.
    Courty S; Bouzigues C; Luccardini C; Ehrensperger MV; Bonneau S; Dahan M
    Methods Enzymol; 2006; 414():211-28. PubMed ID: 17110194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-layer quantum dot constructs using self-assembly methods.
    Rauf S; Glidle A; Cooper JM
    Langmuir; 2010 Nov; 26(22):16934-40. PubMed ID: 20936803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurement of multifunctional quantum dot binding to cellular targets using flow cytometry.
    Smith RA; Giorgio TD
    Cytometry A; 2009 May; 75(5):465-74. PubMed ID: 19034921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dots thermal stability improves simultaneous phenotype-specific telomere length measurement by FISH-flow cytometry.
    Kapoor V; Hakim FT; Rehman N; Gress RE; Telford WG
    J Immunol Methods; 2009 May; 344(1):6-14. PubMed ID: 19268672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots.
    Fountaine TJ; Wincovitch SM; Geho DH; Garfield SH; Pittaluga S
    Mod Pathol; 2006 Sep; 19(9):1181-91. PubMed ID: 16778828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.