BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17397899)

  • 1. Spatial distribution and physiological state of bacteria in a sand column experiment during the biodegradation of toluene.
    Kim HS; Jaffé PR
    Water Res; 2007 May; 41(10):2089-100. PubMed ID: 17397899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of toluene by a mixed population of archetypal aerobes, microaerophiles, and denitrifiers: laboratory sand column experiment and multispecies biofilm model formulation.
    Kim HS; Jaffé PR
    Biotechnol Bioeng; 2008 Feb; 99(2):290-301. PubMed ID: 17626295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toluene biodegradation by Pseudomonas putida F1: targeting culture stability in long-term operation.
    Díaz LF; Muñoz R; Bordel S; Villaverde S
    Biodegradation; 2008 Apr; 19(2):197-208. PubMed ID: 17487552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G.
    Mirpuri R; Jones W; Bryers JD
    Biotechnol Bioeng; 1997 Mar; 53(6):535-46. PubMed ID: 18634054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of biofilm versus suspended bacteria in an aerobic circulating-bed biofilm reactor.
    Yu H; Kim BJ; Rittmann BE
    Water Sci Technol; 2001; 43(1):303-10. PubMed ID: 11379105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel membrane bioreactor: Able to cope with fluctuating loads, poorly water soluble VOCs, and biomass accumulation.
    Studer M; Rudolf von Rohr P
    Biotechnol Bioeng; 2008 Jan; 99(1):38-48. PubMed ID: 17570707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate inhibition kinetics for toluene and benzene degrading pure cultures and a method for collection and analysis of respirometric data for strongly inhibited cultures.
    Alagappan G; Cowan R
    Biotechnol Bioeng; 2003 Sep; 83(7):798-809. PubMed ID: 12889020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites.
    Bordel S; Muñoz R; Díaz LF; Villaverde S
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):857-66. PubMed ID: 17136537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous growth on citrate reduces the effects of iron limitation during toluene degradation in Pseudomonas.
    Dinkla IJ; Janssen DB
    Microb Ecol; 2003 Jan; 45(1):97-107. PubMed ID: 12415420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional electrophoresis analysis of protein production during growth of Pseudomonas putida F1 on toluene, phenol, and their mixture.
    Reardon KF; Kim KH
    Electrophoresis; 2002 Jul; 23(14):2233-41. PubMed ID: 12210227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.
    Grösbacher M; Eckert D; Cirpka OA; Griebler C
    Biodegradation; 2018 Jun; 29(3):211-232. PubMed ID: 29492777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate.
    Bucheli-Witschel M; Hafner T; Rüegg I; Egli T
    Biodegradation; 2009 Jun; 20(3):419-31. PubMed ID: 19039669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of isotopic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations.
    Fang J; Lovanh N; Alvarez PJ
    Water Res; 2004 May; 38(10):2529-36. PubMed ID: 15159156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of growth kinetics for Pseudomonas putida during toluene degradation.
    Choi NC; Choi JW; Kim SB; Kim DJ
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):135-41. PubMed ID: 18712521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene.
    Alagappan G; Cowan RM
    Chemosphere; 2004 Feb; 54(8):1255-65. PubMed ID: 14664855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobically grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens are more sensitive towards organic solvents than aerobic bacteria.
    Duldhardt I; Nijenhuis I; Schauer F; Heipieper HJ
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):705-11. PubMed ID: 17876576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative biodegradation of geosmin by a consortium comprising three gram-negative bacteria isolated from the biofilm of a sand filter column.
    Hoefel D; Ho L; Aunkofer W; Monis PT; Keegan A; Newcombe G; Saint CP
    Lett Appl Microbiol; 2006 Oct; 43(4):417-23. PubMed ID: 16965373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term performance of peat biofilters treating ethyl acetate, toluene, and its mixture in air.
    Alvarez-Hornos FJ; Gabaldón C; Martínez-Soria V; Marzal P; Penya-Roja JM; Izquierdo M
    Biotechnol Bioeng; 2007 Mar; 96(4):651-60. PubMed ID: 16865729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of BTX degraders under substrate versatility conditions.
    Maliyekkal SM; Rene ER; Philip L; Swaminathan T
    J Hazard Mater; 2004 Jun; 109(1-3):201-11. PubMed ID: 15177760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture.
    Rogers JB; DuTeau NM; Reardon KF
    Biotechnol Bioeng; 2000 Nov; 70(4):436-45. PubMed ID: 11005926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.