BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 17397985)

  • 1. Thirty years of Escherichia coli DNA gyrase: from in vivo function to single-molecule mechanism.
    Nöllmann M; Crisona NJ; Arimondo PB
    Biochimie; 2007 Apr; 89(4):490-9. PubMed ID: 17397985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression in Escherichia coli of Y5-mutant and N-terminal domain-deleted DNA gyrase B proteins affects strongly plasmid maintenance.
    Brino L; Mousli M; Oudet P; Weiss E
    Plasmid; 1997; 38(3):188-201. PubMed ID: 9435021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression in Escherichia coli of Y5 mutant and N-terminal domain-deleted DNA gyrase B proteins affects strongly plasmid maintenance.
    Brino L; Mousli M; Oudet P; Weiss E
    Plasmid; 1998; 39(1):21-34. PubMed ID: 9473443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of DNA gyrase-mediated illegitimate recombination: characterization of Escherichia coli gyrA mutations that confer hyper-recombination phenotype.
    Ashizawa Y; Yokochi T; Ogata Y; Shobuike Y; Kato J; Ikeda H
    J Mol Biol; 1999 Jun; 289(3):447-58. PubMed ID: 10356321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity.
    Tretter EM; Berger JM
    J Biol Chem; 2012 May; 287(22):18636-44. PubMed ID: 22457353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tus-mediated arrest of DNA replication in Escherichia coli is modulated by DNA supercoiling.
    Valjavec-Gratian M; Henderson TA; Hill TM
    Mol Microbiol; 2005 Nov; 58(3):758-73. PubMed ID: 16238625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and Hydrolysis of a Single ATP Is Sufficient for N-Gate Closure and DNA Supercoiling by Gyrase.
    Hartmann S; Gubaev A; Klostermeier D
    J Mol Biol; 2017 Nov; 429(23):3717-3729. PubMed ID: 29032205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The "GyrA-box" is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction.
    Kramlinger VM; Hiasa H
    J Biol Chem; 2006 Feb; 281(6):3738-42. PubMed ID: 16332690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E. coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA.
    Fernández-Sierra M; Shao Q; Fountain C; Finzi L; Dunlap D
    J Mol Biol; 2015 Jul; 427(13):2305-18. PubMed ID: 25902201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of four GyrA residues involved in the DNA breakage-reunion reaction of DNA gyrase.
    Hockings SC; Maxwell A
    J Mol Biol; 2002 Apr; 318(2):351-9. PubMed ID: 12051842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA.
    Basu A; Schoeffler AJ; Berger JM; Bryant Z
    Nat Struct Mol Biol; 2012 Apr; 19(5):538-46, S1. PubMed ID: 22484318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli.
    Moulin L; Rahmouni AR; Boccard F
    Mol Microbiol; 2005 Jan; 55(2):601-10. PubMed ID: 15659173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization.
    Hsu YH; Chung MW; Li TK
    Nucleic Acids Res; 2006; 34(10):3128-38. PubMed ID: 16757578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionality maps of the ATP binding site of DNA gyrase B: generation of a consensus model of ligand binding.
    Schechner M; Sirockin F; Stote RH; Dejaegere AP
    J Med Chem; 2004 Aug; 47(18):4373-90. PubMed ID: 15317451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissection of the nucleotide cycle of B. subtilis DNA gyrase and its modulation by DNA.
    Göttler T; Klostermeier D
    J Mol Biol; 2007 Apr; 367(5):1392-404. PubMed ID: 17320901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptides based on CcdB protein as novel inhibitors of bacterial topoisomerases.
    Trovatti E; Cotrim CA; Garrido SS; Barros RS; Marchetto R
    Bioorg Med Chem Lett; 2008 Dec; 18(23):6161-4. PubMed ID: 18938079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulated control of DNA supercoiling balance by the DNA-wrapping domain of bacterial gyrase.
    Hobson MJ; Bryant Z; Berger JM
    Nucleic Acids Res; 2020 Feb; 48(4):2035-2049. PubMed ID: 31950157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activities of gyrase and topoisomerase IV on positively supercoiled DNA.
    Ashley RE; Dittmore A; McPherson SA; Turnbough CL; Neuman KC; Osheroff N
    Nucleic Acids Res; 2017 Sep; 45(16):9611-9624. PubMed ID: 28934496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.