BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 17398247)

  • 1. Preliminary evaluation of an automatically stance-phase controlled pediatric prosthetic knee joint using quantitative gait analysis.
    Andrysek J; Redekop S; Naumann S
    Arch Phys Med Rehabil; 2007 Apr; 88(4):464-70. PubMed ID: 17398247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility function of a prosthetic knee joint with an automatic stance phase lock.
    Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S
    Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and quantitative evaluation of a stance-phase controlled prosthetic knee joint for children.
    Andrysek J; Naumann S; Cleghorn WL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):437-43. PubMed ID: 16425824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical function, gait, and dynamic balance of transfemoral amputees using two mechanical passive prosthetic knee devices.
    Lythgo N; Marmaras B; Connor H
    Arch Phys Med Rehabil; 2010 Oct; 91(10):1565-70. PubMed ID: 20875515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic and kinetic factors that correlate with improved knee flexion following treatment for stiff-knee gait.
    Goldberg SR; Ounpuu S; Arnold AS; Gage JR; Delp SL
    J Biomech; 2006; 39(4):689-98. PubMed ID: 16439238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis.
    Hebert JS; Liggins AB
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1676-80. PubMed ID: 16084826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground reaction forces and center of pressure patterns in the gait of children with amputation: preliminary report.
    Zernicke RF; Hoy MG; Whiting WC
    Arch Phys Med Rehabil; 1985 Nov; 66(11):736-41. PubMed ID: 4062525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elderly unilateral transtibial amputee gait on an inclined walkway: a biomechanical analysis.
    Vickers DR; Palk C; McIntosh AS; Beatty KT
    Gait Posture; 2008 Apr; 27(3):518-29. PubMed ID: 17707643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of direct measurement versus cadaver estimates of anthropometry in the calculation of joint moments during above-knee prosthetic gait in pediatrics.
    Goldberg EJ; Requejo PS; Fowler EG
    J Biomech; 2008; 41(3):695-700. PubMed ID: 18031751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints.
    Andrysek J; García D; Rozbaczylo C; Alvarez-Mitchell C; Valdebenito R; Rotter K; Wright FV
    Prosthet Orthot Int; 2020 Oct; 44(5):314-322. PubMed ID: 32389076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional motions of trunk and pelvis during transfemoral amputee gait.
    Goujon-Pillet H; Sapin E; Fodé P; Lavaste F
    Arch Phys Med Rehabil; 2008 Jan; 89(1):87-94. PubMed ID: 18164336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.