These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17399762)

  • 1. Mathematical model for predicting microbial reduction and transport of arsenic in groundwater systems.
    Lim MS; Yeo IW; Prabhakar Clement T; Roh Y; Lee KK
    Water Res; 2007 May; 41(10):2079-88. PubMed ID: 17399762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a scalable model for predicting arsenic transport coupled with oxidation and adsorption reactions.
    Radu T; Kumar A; Clement TP; Jeppu G; Barnett MO
    J Contam Hydrol; 2008 Jan; 95(1-2):30-41. PubMed ID: 17706833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil.
    Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M
    J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogeochemical influence on transport of chromium in manganese sediments: experimental and modeling approaches.
    Guha H
    J Contam Hydrol; 2004 May; 70(1-2):1-36. PubMed ID: 15068867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring and modelling straining of Escherichia coli in saturated porous media.
    Foppen JW; van Herwerden M; Schijven J
    J Contam Hydrol; 2007 Aug; 93(1-4):236-54. PubMed ID: 17466406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contaminant transport in groundwater in the presence of colloids and bacteria: model development and verification.
    Bekhit HM; El-Kordy MA; Hassan AE
    J Contam Hydrol; 2009 Sep; 108(3-4):152-67. PubMed ID: 19695736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.
    Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S
    J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic removal by iron-oxidizing bacteria in a fixed-bed coconut husk column: Experimental study and numerical modeling.
    Razzak A; Shafiquzzaman M; Haider H; Alresheedi M
    Environ Pollut; 2021 Mar; 272():115977. PubMed ID: 33172698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.
    Zhang F; Yeh GT; Parker JC; Brooks SC; Pace MN; Kim YJ; Jardine PM; Watson DB
    J Contam Hydrol; 2007 Jun; 92(1-2):10-32. PubMed ID: 17229488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive transport of arsenic(III) and arsenic(V) on natural hematite: experimental and modeling.
    Giménez J; de Pablo J; Martínez M; Rovira M; Valderrama C
    J Colloid Interface Sci; 2010 Aug; 348(1):293-7. PubMed ID: 20478565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR
    J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 34S/32S fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling.
    Gibson BD; Amos RT; Blowes DW
    Environ Sci Technol; 2011 Apr; 45(7):2863-70. PubMed ID: 21355530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation.
    Singhal N; Islam J
    J Contam Hydrol; 2008 Feb; 96(1-4):32-47. PubMed ID: 17996980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    Water Res; 2008 Dec; 42(19):4885-93. PubMed ID: 18929386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic removal from real-life groundwater by adsorption on laterite soil.
    Maji SK; Pal A; Pal T
    J Hazard Mater; 2008 Mar; 151(2-3):811-20. PubMed ID: 17658682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas.
    Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA
    J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of simazine in unsaturated sandy soil and predictions of its leaching under hypothetical field conditions.
    Suárez F; Bachmann J; Muñoz JF; Ortiz C; Tyler SW; Alister C; Kogan M
    J Contam Hydrol; 2007 Dec; 94(3-4):166-77. PubMed ID: 17604874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.