BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 17399975)

  • 21. What can be learned from silage breeding programs?
    Lorenz AJ; Coors JG
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):261-70. PubMed ID: 18418758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
    Himmel ME; Ding SY; Johnson DK; Adney WS; Nimlos MR; Brady JW; Foust TD
    Science; 2007 Feb; 315(5813):804-7. PubMed ID: 17289988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass.
    Falter C; Zwikowics C; Eggert D; Blümke A; Naumann M; Wolff K; Ellinger D; Reimer R; Voigt CA
    Sci Rep; 2015 Sep; 5():13722. PubMed ID: 26324382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production.
    Niu L; Liu L; Zhang J; Scali M; Wang W; Hu X; Wu X
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase.
    Fornalé S; Capellades M; Encina A; Wang K; Irar S; Lapierre C; Ruel K; Joseleau JP; Berenguer J; Puigdomènech P; Rigau J; Caparrós-Ruiz D
    Mol Plant; 2012 Jul; 5(4):817-30. PubMed ID: 22147756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prospects for increasing starch and sucrose yields for bioethanol production.
    Smith AM
    Plant J; 2008 May; 54(4):546-58. PubMed ID: 18476862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection, breeding and engineering of microalgae for bioenergy and biofuel production.
    Larkum AW; Ross IL; Kruse O; Hankamer B
    Trends Biotechnol; 2012 Apr; 30(4):198-205. PubMed ID: 22178650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential impacts of biomass feedstock production on water resource availability.
    Stone KC; Hunt PG; Cantrell KB; Ro KS
    Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.
    Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2008 Nov; 56(22):10445-51. PubMed ID: 18942836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.
    Amon T; Amon B; Kryvoruchko V; Machmüller A; Hopfner-Sixt K; Bodiroza V; Hrbek R; Friedel J; Pötsch E; Wagentristl H; Schreiner M; Zollitsch W
    Bioresour Technol; 2007 Dec; 98(17):3204-12. PubMed ID: 16935493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'.
    Chandel AK; Singh OV
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1289-303. PubMed ID: 21181146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redistribution of xylan in maize cell walls during dilute acid pretreatment.
    Brunecky R; Vinzant TB; Porter SE; Donohoe BS; Johnson DK; Himmel ME
    Biotechnol Bioeng; 2009 Apr; 102(6):1537-43. PubMed ID: 19161247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suitability of some selected maize hybrids from Serbia for the production of bioethanol and dried distillers' grains with solubles.
    Semenčenko VV; Mojović LV; Dukić-Vuković AP; Radosavljević MM; Terzić DR; Milašinović Šeremešić MS
    J Sci Food Agric; 2013 Mar; 93(4):811-8. PubMed ID: 22887346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioethanol.
    Gray KA; Zhao L; Emptage M
    Curr Opin Chem Biol; 2006 Apr; 10(2):141-6. PubMed ID: 16522374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Algal biomass conversion to bioethanol - a step-by-step assessment.
    Harun R; Yip JW; Thiruvenkadam S; Ghani WA; Cherrington T; Danquah MK
    Biotechnol J; 2014 Jan; 9(1):73-86. PubMed ID: 24227697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of water requirement factors for biomass conversion pathway.
    Singh S; Kumar A
    Bioresour Technol; 2011 Jan; 102(2):1316-28. PubMed ID: 20888758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of corn stover bioconversion efficiency by using plant glycoside hydrolase.
    Han Y; Chen H
    Bioresour Technol; 2011 Apr; 102(7):4787-92. PubMed ID: 21300542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges in engineering microbes for biofuels production.
    Stephanopoulos G
    Science; 2007 Feb; 315(5813):801-4. PubMed ID: 17289987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The new gold rush: fueling ethanol production while protecting water quality.
    Simpson TW; Sharpley AN; Howarth RW; Paerl HW; Mankin KR
    J Environ Qual; 2008; 37(2):318-24. PubMed ID: 18268293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An analysis of net energy production and feedstock availability for biobutanol and bioethanol.
    Swana J; Yang Y; Behnam M; Thompson R
    Bioresour Technol; 2011 Jan; 102(2):2112-7. PubMed ID: 20843683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.