These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 17399975)

  • 61. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels.
    Taylor LE; Dai Z; Decker SR; Brunecky R; Adney WS; Ding SY; Himmel ME
    Trends Biotechnol; 2008 Aug; 26(8):413-24. PubMed ID: 18579242
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.
    Ko JK; Lee SM
    Curr Opin Biotechnol; 2018 Apr; 50():72-80. PubMed ID: 29195120
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cellulosic ethanol. Biofuel researchers prepare to reap a new harvest.
    Service RF
    Science; 2007 Mar; 315(5818):1488-91. PubMed ID: 17363642
    [No Abstract]   [Full Text] [Related]  

  • 64. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure.
    Oleskowicz-Popiel P; Lisiecki P; Holm-Nielsen JB; Thomsen AB; Thomsen MH
    Bioresour Technol; 2008 Sep; 99(13):5327-34. PubMed ID: 18096383
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Conversion of biomass hydrolysates and other substrates to ethanol and other chemicals by Lactobacillus buchneri*.
    Liu S; Bischoff KM; Hughes SR; Leathers TD; Price NP; Qureshi N; Rich JO
    Lett Appl Microbiol; 2009 Mar; 48(3):337-42. PubMed ID: 19187511
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bacteria engineered for fuel ethanol production: current status.
    Dien BS; Cotta MA; Jeffries TW
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):258-66. PubMed ID: 13680206
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Regulation of plant biomass production.
    Demura T; Ye ZH
    Curr Opin Plant Biol; 2010 Jun; 13(3):299-304. PubMed ID: 20381410
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Policy options to support biofuel production.
    Mabee WE
    Adv Biochem Eng Biotechnol; 2007; 108():329-57. PubMed ID: 17846726
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A panoramic view of technological landscape for bioethanol production from various generations of feedstocks.
    Devi A; Bajar S; Sihag P; Sheikh ZUD; Singh A; Kaur J; Bishnoi NR; Pant D
    Bioengineered; 2023 Dec; 14(1):81-112. PubMed ID: 37401849
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polyelectrolyte flocculation of grain stillage for improved clarification and water recovery within bioethanol production facilities.
    Menkhaus TJ; Anderson J; Lane S; Waddell E
    Bioresour Technol; 2010 Apr; 101(7):2280-6. PubMed ID: 19962888
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Molecular markers in genetic and selection studies of maize].
    Kozhukhova NE; Sivolap IuM
    Tsitol Genet; 2006; 40(5):69-80. PubMed ID: 17385419
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Manipulating corn germplasm to increase recombinant protein accumulation.
    Hood EE; Devaiah SP; Fake G; Egelkrout E; Teoh KT; Requesens DV; Hayden C; Hood KR; Pappu KM; Carroll J; Howard JA
    Plant Biotechnol J; 2012 Jan; 10(1):20-30. PubMed ID: 21627759
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Future research directions in plant signal transduction mechanisms.
    Heck DA
    Indian J Biochem Biophys; 2000 Dec; 37(6):369-76. PubMed ID: 11355623
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment.
    Donohoe BS; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Bioeng; 2008 Dec; 101(5):913-25. PubMed ID: 18781690
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biogas as a resource-efficient vehicle fuel.
    Börjesson P; Mattiasson B
    Trends Biotechnol; 2008 Jan; 26(1):7-13. PubMed ID: 18036686
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Natural variability of metabolites in maize grain: differences due to genetic background.
    Reynolds TL; Nemeth MA; Glenn KC; Ridley WP; Astwood JD
    J Agric Food Chem; 2005 Dec; 53(26):10061-7. PubMed ID: 16366695
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production.
    Peña-Castro JM; Del Moral S; Núñez-López L; Barrera-Figueroa BE; Amaya-Delgado L
    Biomed Res Int; 2017; 2017():7824076. PubMed ID: 28951875
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Designing the deconstruction of plant cell walls.
    McCann MC; Carpita NC
    Curr Opin Plant Biol; 2008 Jun; 11(3):314-20. PubMed ID: 18486537
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biofuel alternatives to ethanol: pumping the microbial well.
    Fortman JL; Chhabra S; Mukhopadhyay A; Chou H; Lee TS; Steen E; Keasling JD
    Trends Biotechnol; 2008 Jul; 26(7):375-81. PubMed ID: 18471913
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis of federal and state policies and environmental issues for bioethanol production facilities.
    McGee C; Chan Hilton AB
    Environ Sci Technol; 2011 Mar; 45(5):1780-91. PubMed ID: 21226502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.