These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17400034)

  • 1. Avoiding and resolving conflicts between DNA replication and transcription.
    Rudolph CJ; Dhillon P; Moore T; Lloyd RG
    DNA Repair (Amst); 2007 Jul; 6(7):981-93. PubMed ID: 17400034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conflict Resolution in the Genome: How Transcription and Replication Make It Work.
    Hamperl S; Cimprich KA
    Cell; 2016 Dec; 167(6):1455-1467. PubMed ID: 27912056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription.
    Trautinger BW; Jaktaji RP; Rusakova E; Lloyd RG
    Mol Cell; 2005 Jul; 19(2):247-58. PubMed ID: 16039593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct removal of RNA polymerase barriers to replication by accessory replicative helicases.
    Hawkins M; Dimude JU; Howard JAL; Smith AJ; Dillingham MS; Savery NJ; Rudolph CJ; McGlynn P
    Nucleic Acids Res; 2019 Jun; 47(10):5100-5113. PubMed ID: 30869136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conflict between DNA replication and transcription.
    McGlynn P; Savery NJ; Dillingham MS
    Mol Microbiol; 2012 Jul; 85(1):12-20. PubMed ID: 22607628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What happens when replication and transcription complexes collide?
    Pomerantz RT; O'Donnell M
    Cell Cycle; 2010 Jul; 9(13):2537-43. PubMed ID: 20581460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription.
    Bermejo R; Lai MS; Foiani M
    Mol Cell; 2012 Mar; 45(6):710-8. PubMed ID: 22464441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaping the landscape of the Escherichia coli chromosome: replication-transcription encounters in cells with an ectopic replication origin.
    Ivanova D; Taylor T; Smith SL; Dimude JU; Upton AL; Mehrjouy MM; Skovgaard O; Sherratt DJ; Retkute R; Rudolph CJ
    Nucleic Acids Res; 2015 Sep; 43(16):7865-77. PubMed ID: 26160884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replication Restart after Replication-Transcription Conflicts Requires RecA in Bacillus subtilis.
    Million-Weaver S; Samadpour AN; Merrikh H
    J Bacteriol; 2015 Jul; 197(14):2374-82. PubMed ID: 25939832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery.
    Elías-Arnanz M; Salas M
    EMBO J; 1997 Sep; 16(18):5775-83. PubMed ID: 9312035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Too Much of a Good Thing: How Ectopic DNA Replication Affects Bacterial Replication Dynamics.
    Syeda AH; Dimude JU; Skovgaard O; Rudolph CJ
    Front Microbiol; 2020; 11():534. PubMed ID: 32351461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconciling DNA replication and transcription in a hyphal organism: visualizing transcription complexes in live
    Kerr L; Hoskisson PA
    Microbiology (Reading); 2019 Oct; 165(10):1086-1094. PubMed ID: 31429818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct restart of a replication fork stalled by a head-on RNA polymerase.
    Pomerantz RT; O'Donnell M
    Science; 2010 Jan; 327(5965):590-2. PubMed ID: 20110508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation.
    Elías-Arnanz M; Salas M
    EMBO J; 1999 Oct; 18(20):5675-82. PubMed ID: 10523310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UvrD facilitates DNA repair by pulling RNA polymerase backwards.
    Epshtein V; Kamarthapu V; McGary K; Svetlov V; Ueberheide B; Proshkin S; Mironov A; Nudler E
    Nature; 2014 Jan; 505(7483):372-7. PubMed ID: 24402227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription-replication conflicts: how they occur and how they are resolved.
    García-Muse T; Aguilera A
    Nat Rev Mol Cell Biol; 2016 Sep; 17(9):553-63. PubMed ID: 27435505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of dealing with DNA damage-induced replication problems.
    Budzowska M; Kanaar R
    Cell Biochem Biophys; 2009; 53(1):17-31. PubMed ID: 19034694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinating Replication with Transcription.
    Achar YJ; Foiani M
    Adv Exp Med Biol; 2017; 1042():455-487. PubMed ID: 29357070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of DNA repair by mutations flanking the DNA channel through RNA polymerase.
    Trautinger BW; Lloyd RG
    EMBO J; 2002 Dec; 21(24):6944-53. PubMed ID: 12486015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DNA replication fork can pass RNA polymerase without displacing the nascent transcript.
    Liu B; Wong ML; Tinker RL; Geiduschek EP; Alberts BM
    Nature; 1993 Nov; 366(6450):33-9. PubMed ID: 8232535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.