These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 17400245)
1. Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. Park C; Zhou S; Gilmore J; Marqusee S J Mol Biol; 2007 May; 368(5):1426-37. PubMed ID: 17400245 [TBL] [Abstract][Full Text] [Related]
2. Investigating protein unfolding kinetics by pulse proteolysis. Na YR; Park C Protein Sci; 2009 Feb; 18(2):268-76. PubMed ID: 19177560 [TBL] [Abstract][Full Text] [Related]
3. Engineered synthetic antibodies as probes to quantify the energetic contributions of ligand binding to conformational changes in proteins. Mukherjee S; Griffin DH; Horn JR; Rizk SS; Nocula-Lugowska M; Malmqvist M; Kim SS; Kossiakoff AA J Biol Chem; 2018 Feb; 293(8):2815-2828. PubMed ID: 29321208 [TBL] [Abstract][Full Text] [Related]
4. Mapping transient partial unfolding by protein engineering and native-state proteolysis. Chang Y; Park C J Mol Biol; 2009 Oct; 393(2):543-56. PubMed ID: 19683000 [TBL] [Abstract][Full Text] [Related]
5. Discovery of Nicotinamide Adenine Dinucleotide Binding Proteins in the Escherichia coli Proteome Using a Combined Energetic- and Structural-Bioinformatics-Based Approach. Zeng L; Shin WH; Zhu X; Park SH; Park C; Tao WA; Kihara D J Proteome Res; 2017 Feb; 16(2):470-480. PubMed ID: 28152599 [TBL] [Abstract][Full Text] [Related]
6. Investigating the effect of temperature on transient partial unfolding by proteolysis. Youn K; Park C Protein Pept Lett; 2009; 16(9):1093-7. PubMed ID: 19508205 [TBL] [Abstract][Full Text] [Related]
7. Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability. Young TA; Skordalakes E; Marqusee S J Mol Biol; 2007 May; 368(5):1438-47. PubMed ID: 17397866 [TBL] [Abstract][Full Text] [Related]
8. Probing the high energy states in proteins by proteolysis. Park C; Marqusee S J Mol Biol; 2004 Nov; 343(5):1467-76. PubMed ID: 15491624 [TBL] [Abstract][Full Text] [Related]
9. Energetics-based discovery of protein-ligand interactions on a proteomic scale. Liu PF; Kihara D; Park C J Mol Biol; 2011 Apr; 408(1):147-62. PubMed ID: 21338610 [TBL] [Abstract][Full Text] [Related]
10. Single-molecule studies of the Im7 folding landscape. Pugh SD; Gell C; Smith DA; Radford SE; Brockwell DJ J Mol Biol; 2010 Apr; 398(1):132-45. PubMed ID: 20211187 [TBL] [Abstract][Full Text] [Related]
11. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments. Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299 [TBL] [Abstract][Full Text] [Related]
12. Simplified proteomics approach to discover protein-ligand interactions. Chang Y; Schlebach JP; VerHeul RA; Park C Protein Sci; 2012 Sep; 21(9):1280-7. PubMed ID: 22733688 [TBL] [Abstract][Full Text] [Related]
13. How maltose influences structural changes to bind to maltose-binding protein: results from umbrella sampling simulation. Mascarenhas NM; Kästner J Proteins; 2013 Feb; 81(2):185-98. PubMed ID: 22933379 [TBL] [Abstract][Full Text] [Related]
14. Ensemble-based signatures of energy propagation in proteins: a new view of an old phenomenon. Liu T; Whitten ST; Hilser VJ Proteins; 2006 Mar; 62(3):728-38. PubMed ID: 16284972 [TBL] [Abstract][Full Text] [Related]
15. Probing the conformational state of apomyoglobin by limited proteolysis. Fontana A; Zambonin M; Polverino de Laureto P; De Filippis V; Clementi A; Scaramella E J Mol Biol; 1997 Feb; 266(2):223-30. PubMed ID: 9047359 [TBL] [Abstract][Full Text] [Related]
16. Energy landscapes associated with macromolecular conformational changes from endpoint structures. Fornili A; Giabbai B; Garau G; Degano M J Am Chem Soc; 2010 Dec; 132(49):17570-7. PubMed ID: 21082835 [TBL] [Abstract][Full Text] [Related]
17. Identification of linker regions and domain borders of the transcription activator protein NtrC from Escherichia coli by limited proteolysis, in-gel digestion, and mass spectrometry. Bantscheff M; Weiss V; Glocker MO Biochemistry; 1999 Aug; 38(34):11012-20. PubMed ID: 10460156 [TBL] [Abstract][Full Text] [Related]
18. Intrinsic disorder of the bacterial cell division protein ZipA: coil-to-brush conformational transition. López-Montero I; López-Navajas P; Mingorance J; Rivas G; Vélez M; Vicente M; Monroy F FASEB J; 2013 Aug; 27(8):3363-75. PubMed ID: 23660966 [TBL] [Abstract][Full Text] [Related]
19. Activity-based protein profiling of the Escherichia coli GlpG rhomboid protein delineates the catalytic core. Sherratt AR; Blais DR; Ghasriani H; Pezacki JP; Goto NK Biochemistry; 2012 Oct; 51(39):7794-803. PubMed ID: 22963263 [TBL] [Abstract][Full Text] [Related]
20. The conformational landscape of an intrinsically disordered DNA-binding domain of a transcription regulator. Naganathan AN; Orozco M J Phys Chem B; 2013 Nov; 117(44):13842-50. PubMed ID: 24127726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]