These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
940 related articles for article (PubMed ID: 17400282)
1. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Lambert R; Grant C; Sauvé S Sci Total Environ; 2007 Jun; 378(3):293-305. PubMed ID: 17400282 [TBL] [Abstract][Full Text] [Related]
2. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
3. Monitoring heavy metal concentrations in leachates from a forest soil subjected to repeated applications of sewage sludge. Egiarte G; Pinto M; Ruíz-Romera E; Camps Arbestain M Environ Pollut; 2008 Dec; 156(3):840-8. PubMed ID: 18602203 [TBL] [Abstract][Full Text] [Related]
4. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers. Yamaguchi N; Kawasaki A; Iiyama I Sci Total Environ; 2009 Feb; 407(4):1383-90. PubMed ID: 19033080 [TBL] [Abstract][Full Text] [Related]
5. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Jalali M; Khanlari ZV Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Chen S; Xu M; Ma Y; Yang J Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186 [TBL] [Abstract][Full Text] [Related]
7. Assessing long-term environmental risks of trace elements in phosphate fertilizers. Chen W; Chang AC; Wu L Ecotoxicol Environ Saf; 2007 May; 67(1):48-58. PubMed ID: 17296225 [TBL] [Abstract][Full Text] [Related]
8. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming. Hong CO; Gutierrez J; Yun SW; Lee YB; Yu C; Kim PJ Arch Environ Contam Toxicol; 2009 Feb; 56(2):190-200. PubMed ID: 18704256 [TBL] [Abstract][Full Text] [Related]
9. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.). Zhao ZQ; Zhu YG; Li HY; Smith SE; Smith FA Environ Int; 2004 Jan; 29(7):973-8. PubMed ID: 14592574 [TBL] [Abstract][Full Text] [Related]
10. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Nziguheba G; Smolders E Sci Total Environ; 2008 Feb; 390(1):53-7. PubMed ID: 18028985 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Cheraghi M; Lorestani B; Merrikhpour H Biol Trace Elem Res; 2012 Jan; 145(1):87-92. PubMed ID: 21826610 [TBL] [Abstract][Full Text] [Related]
12. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Muhammad I; Puschenreiter M; Wenzel WW Sci Total Environ; 2012 Feb; 416():490-500. PubMed ID: 22177029 [TBL] [Abstract][Full Text] [Related]
13. Trophic barriers to fertilizer Cd bioaccumulation through the food chain: a case study using a plant--insect predator pathway. Merrington G; Miller D; McLaughlin MJ; Keller MA Arch Environ Contam Toxicol; 2001 Aug; 41(2):151-6. PubMed ID: 11462138 [TBL] [Abstract][Full Text] [Related]
14. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. de Livera J; McLaughlin MJ; Hettiarachchi GM; Kirby JK; Beak DG Sci Total Environ; 2011 Mar; 409(8):1489-97. PubMed ID: 21277005 [TBL] [Abstract][Full Text] [Related]
15. Geochemical features of topsoils in the Gaza Strip: natural occurrence and anthropogenic inputs. Shomar BH; Müller G; Yahya A Environ Res; 2005 Jul; 98(3):372-82. PubMed ID: 15910793 [TBL] [Abstract][Full Text] [Related]
16. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay. Aruoja V; Kurvet I; Dubourguier HC; Kahru A Environ Toxicol; 2004 Aug; 19(4):396-402. PubMed ID: 15269912 [TBL] [Abstract][Full Text] [Related]
17. Landscape ecology of the Guanting Reservoir, Beijing, China: multivariate and geostatistical analyses of metals in soils. Luo W; Wang T; Lu Y; Giesy JP; Shi Y; Zheng Y; Xing Y; Wu G Environ Pollut; 2007 Mar; 146(2):567-76. PubMed ID: 17010487 [TBL] [Abstract][Full Text] [Related]
18. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Caille N; Swanwick S; Zhao FJ; McGrath SP Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279 [TBL] [Abstract][Full Text] [Related]
19. Zinc transformations in neutral soil and zinc efficiency in maize fertilization. Alvarez JM; Gonzalez D J Agric Food Chem; 2006 Dec; 54(25):9488-95. PubMed ID: 17147437 [TBL] [Abstract][Full Text] [Related]
20. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Zhu Y; Yu H; Wang J; Fang W; Yuan J; Yang Z J Agric Food Chem; 2007 Feb; 55(3):1045-52. PubMed ID: 17263511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]