BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17400351)

  • 1. Quantifying the importance of diffuse minewater pollution in a historically heavily coal mined catchment.
    Mayes WM; Gozzard E; Potter HA; Jarvis AP
    Environ Pollut; 2008 Jan; 151(1):165-75. PubMed ID: 17400351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK.
    Shepherd TJ; Chenery SR; Pashley V; Lord RA; Ander LE; Breward N; Hobbs SF; Horstwood M; Klinck BA; Worrall F
    Sci Total Environ; 2009 Aug; 407(17):4882-93. PubMed ID: 19524999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK.
    Gozzard E; Mayes WM; Potter HA; Jarvis AP
    Environ Pollut; 2011 Oct; 159(10):3113-22. PubMed ID: 21561697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatial and seasonal assessment of river water chemistry across North West England.
    Rothwell JJ; Dise NB; Taylor KG; Allott TE; Scholefield P; Davies H; Neal C
    Sci Total Environ; 2010 Jan; 408(4):841-55. PubMed ID: 19926113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil.
    Lattuada RM; Menezes CT; Pavei PT; Peralba MC; Dos Santos JH
    J Hazard Mater; 2009 Apr; 163(2-3):531-7. PubMed ID: 18692306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synoptic monitoring as an approach to discriminating between point and diffuse source contributions to zinc loads in mining impacted catchments.
    Banks VJ; Palumbo-Roe B
    J Environ Monit; 2010 Sep; 12(9):1684-98. PubMed ID: 20625579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A retrospective assessment of gold mining in the Reedy Creek sub-catchment, northeast Victoria, Australia: residual mercury contamination 100 years later.
    Churchill RC; Meathrel CE; Suter PJ
    Environ Pollut; 2004 Nov; 132(2):355-63. PubMed ID: 15312947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. River water quality of the River Cherwell: an agricultural clay-dominated catchment in the upper Thames Basin, southeastern England.
    Neal C; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 May; 360(1-3):272-89. PubMed ID: 16253306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new generic approach for estimating the concentrations of down-the-drain chemicals at catchment and national scale.
    Keller VD; Rees HG; Fox KK; Whelan MJ
    Environ Pollut; 2007 Jul; 148(1):334-42. PubMed ID: 17258364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A national strategy for identification, prioritisation and management of pollution from abandoned non-coal mine sites in England and Wales. I. Methodology development and initial results.
    Mayes WM; Johnston D; Potter HA; Jarvis AP
    Sci Total Environ; 2009 Oct; 407(21):5435-47. PubMed ID: 19660783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inventory of aquatic contaminant flux arising from historical metal mining in England and Wales.
    Mayes WM; Potter HA; Jarvis AP
    Sci Total Environ; 2010 Aug; 408(17):3576-83. PubMed ID: 20483448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ribble/Wyre observatory: major, minor and trace elements in rivers draining from rural headwaters to the heartlands of the NW England historic industrial base.
    Neal C; Rowland P; Scholefield P; Vincent C; Woods C; Sleep D
    Sci Total Environ; 2011 Mar; 409(8):1516-29. PubMed ID: 21296383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface water monitoring in the mercury mining district of Asturias (Spain).
    Loredo J; Petit-Domínguez MD; Ordóñez A; Galán MP; Fernández-Martínez R; Alvarez R; Rucandio MI
    J Hazard Mater; 2010 Apr; 176(1-3):323-32. PubMed ID: 20005627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.
    Kaushik A; Kansal A; Santosh ; Meena ; Kumari S; Kaushik CP
    J Hazard Mater; 2009 May; 164(1):265-70. PubMed ID: 18809251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of metal source uncertainty on cost-effective allocation of mine water pollution abatement in catchments.
    Baresel C; Destouni G; Gren IM
    J Environ Manage; 2006 Jan; 78(2):138-48. PubMed ID: 16095805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluvial-controlled metal and As mobilisation, dispersal and storage in the Río Guadiamar, SW Spain and its implications for long-term contaminant fluxes to the Doñana wetlands.
    Turner JN; Brewer PA; Macklin MG
    Sci Total Environ; 2008 May; 394(1):144-61. PubMed ID: 18289642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water quality, nutrients and the European union's Water Framework Directive in a lowland agricultural region: Suffolk, south-east England.
    Howden NJ; Bowes MJ; Clark AD; Humphries N; Neal C
    Sci Total Environ; 2009 Apr; 407(8):2966-79. PubMed ID: 19217145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface water quality assessment of the Vatinsky Egan River catchment, West Siberia.
    Moskovchenko DV; Babushkin AG; Artamonova GN
    Environ Monit Assess; 2009 Jan; 148(1-4):359-68. PubMed ID: 18283550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.