BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

724 related articles for article (PubMed ID: 17400653)

  • 21. Genome-wide identification and in silico characterisation of microRNAs, their targets and processing pathway genes in Phaseolus vulgaris L.
    de Sousa Cardoso TC; Portilho LG; de Oliveira CL; McKeown PC; Maluf WR; Gomes LA; Teixeira TA; do Amaral LR; Spillane C; de Souza Gomes M
    Plant Biol (Stuttg); 2016 Mar; 18(2):206-19. PubMed ID: 26250338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights into pri-miRNA processing and accumulation in plants.
    Zhang S; Liu Y; Yu B
    Wiley Interdiscip Rev RNA; 2015; 6(5):533-45. PubMed ID: 26119101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex.
    Kawahara Y; Zinshteyn B; Chendrimada TP; Shiekhattar R; Nishikura K
    EMBO Rep; 2007 Aug; 8(8):763-9. PubMed ID: 17599088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. miRNASNP-v3: a comprehensive database for SNPs and disease-related variations in miRNAs and miRNA targets.
    Liu CJ; Fu X; Xia M; Zhang Q; Gu Z; Guo AY
    Nucleic Acids Res; 2021 Jan; 49(D1):D1276-D1281. PubMed ID: 32990748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a.
    Le CT; Nguyen TL; Nguyen TD; Nguyen TA
    RNA; 2020 Dec; 26(12):1777-1786. PubMed ID: 32994184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes.
    Duan S; Mi S; Zhang W; Dolan ME
    RNA Biol; 2009; 6(4):412-25. PubMed ID: 19458495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic variants in miRNA processing genes and pre-miRNAs are associated with the risk of chronic lymphocytic leukemia.
    Martin-Guerrero I; Gutierrez-Camino A; Lopez-Lopez E; Bilbao-Aldaiturriaga N; Pombar-Gomez M; Ardanaz M; Garcia-Orad A
    PLoS One; 2015; 10(3):e0118905. PubMed ID: 25793711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms.
    Chang TC; Pertea M; Lee S; Salzberg SL; Mendell JT
    Genome Res; 2015 Sep; 25(9):1401-9. PubMed ID: 26290535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The nuclear RNase III Drosha initiates microRNA processing.
    Lee Y; Ahn C; Han J; Choi H; Kim J; Yim J; Lee J; Provost P; Rådmark O; Kim S; Kim VN
    Nature; 2003 Sep; 425(6956):415-9. PubMed ID: 14508493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.
    Shi J; Sun J; Wang B; Wu M; Zhang J; Duan Z; Wang H; Hu N; Hu Y
    FASEB J; 2014 Oct; 28(10):4381-93. PubMed ID: 25002121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N6-methyladenosine marks primary microRNAs for processing.
    Alarcón CR; Lee H; Goodarzi H; Halberg N; Tavazoie SF
    Nature; 2015 Mar; 519(7544):482-5. PubMed ID: 25799998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression.
    Du P; Wang L; Sliz P; Gregory RI
    Cell; 2015 Aug; 162(4):885-99. PubMed ID: 26255770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural dynamics control the MicroRNA maturation pathway.
    Dallaire P; Tan H; Szulwach K; Ma C; Jin P; Major F
    Nucleic Acids Res; 2016 Nov; 44(20):9956-9964. PubMed ID: 27651454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microprocessor dynamics shows co- and post-transcriptional processing of pri-miRNAs.
    Louloupi A; Ntini E; Liz J; Ørom UA
    RNA; 2017 Jun; 23(6):892-898. PubMed ID: 28250203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular siRNA and precursor miRNA trafficking using bioresponsive copolypeptides.
    Rahbek UL; Howard KA; Oupicky D; Manickam DS; Dong M; Nielsen AF; Hansen TB; Besenbacher F; Kjems J
    J Gene Med; 2008 Jan; 10(1):81-93. PubMed ID: 18000993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure determinants for accurate processing of miR172a in Arabidopsis thaliana.
    Werner S; Wollmann H; Schneeberger K; Weigel D
    Curr Biol; 2010 Jan; 20(1):42-8. PubMed ID: 20015654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PmiRKB: a plant microRNA knowledge base.
    Meng Y; Gou L; Chen D; Mao C; Jin Y; Wu P; Chen M
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D181-7. PubMed ID: 20719744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recognition and cleavage of primary microRNA transcripts.
    Zeng Y; Cullen BR
    Methods Mol Biol; 2006; 342():49-56. PubMed ID: 16957366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of soybean microRNAs and their targets.
    Zhang B; Pan X; Stellwag EJ
    Planta; 2008 Dec; 229(1):161-82. PubMed ID: 18815805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The hsa-miR-125a/hsa-let-7e/hsa-miR-99b cluster is potentially implicated in Cystic Fibrosis pathogenesis.
    Endale Ahanda ML; Bienvenu T; Sermet-Gaudelus I; Mazzolini L; Edelman A; Zoorob R; Davezac N
    J Cyst Fibros; 2015 Sep; 14(5):571-9. PubMed ID: 25800681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.