These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17400692)

  • 1. Elastic properties of the cell surface and trafficking of single AMPA receptors in living hippocampal neurons.
    Yersin A; Hirling H; Kasas S; Roduit C; Kulangara K; Dietler G; Lafont F; Catsicas S; Steiner P
    Biophys J; 2007 Jun; 92(12):4482-9. PubMed ID: 17400692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs.
    Ashby MC; De La Rue SA; Ralph GS; Uney J; Collingridge GL; Henley JM
    J Neurosci; 2004 Jun; 24(22):5172-6. PubMed ID: 15175386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct subunit-specific α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking mechanisms in cultured cortical and hippocampal neurons in response to oxygen and glucose deprivation.
    Blanco-Suarez E; Hanley JG
    J Biol Chem; 2014 Feb; 289(8):4644-51. PubMed ID: 24403083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons.
    Gong XQ; Frandsen A; Lu WY; Wan Y; Zabek RL; Pickering DS; Bai D
    Br J Pharmacol; 2005 Jun; 145(4):449-59. PubMed ID: 15806114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons.
    Song J; Shen G; Greenfield LJ; Tietz EI
    J Pharmacol Exp Ther; 2007 Aug; 322(2):569-81. PubMed ID: 17510319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway.
    Schwarz LA; Hall BJ; Patrick GN
    J Neurosci; 2010 Dec; 30(49):16718-29. PubMed ID: 21148011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPA and NMDA Receptor Trafficking at Cocaine-Generated Synapses.
    Wang YQ; Huang YH; Balakrishnan S; Liu L; Wang YT; Nestler EJ; Schlüter OM; Dong Y
    J Neurosci; 2021 Mar; 41(9):1996-2011. PubMed ID: 33436529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-ionotropic cross-talk between AMPA and NMDA receptors in rodent hippocampal neurones.
    Bai D; Muller RU; Roder JC
    J Physiol; 2002 Aug; 543(Pt 1):23-33. PubMed ID: 12181279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trafficking of calcium-permeable and calcium-impermeable AMPA receptors in nucleus accumbens medium spiny neurons co-cultured with prefrontal cortex neurons.
    Werner CT; Murray CH; Reimers JM; Chauhan NM; Woo KK; Molla HM; Loweth JA; Wolf ME
    Neuropharmacology; 2017 Apr; 116():224-232. PubMed ID: 27993521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trafficking of AMPA receptors at plasma membranes of hippocampal neurons.
    Tao-Cheng JH; Crocker VT; Winters CA; Azzam R; Chludzinski J; Reese TS
    J Neurosci; 2011 Mar; 31(13):4834-43. PubMed ID: 21451021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endosomal sorting of AMPA receptors in hippocampal neurons.
    Hanley JG
    Biochem Soc Trans; 2010 Apr; 38(2):460-5. PubMed ID: 20298203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of cytoskeleton to the internalization of AMPA receptors.
    Zhou Q; Xiao M; Nicoll RA
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1261-6. PubMed ID: 11158627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors.
    Danielson E; Zhang N; Metallo J; Kaleka K; Shin SM; Gerges N; Lee SH
    J Neurosci; 2012 May; 32(20):6967-80. PubMed ID: 22593065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression.
    Citri A; Bhattacharyya S; Ma C; Morishita W; Fang S; Rizo J; Malenka RC
    J Neurosci; 2010 Dec; 30(49):16437-52. PubMed ID: 21147983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites.
    Liu B; Liao M; Mielke JG; Ning K; Chen Y; Li L; El-Hayek YH; Gomez E; Zukin RS; Fehlings MG; Wan Q
    J Neurosci; 2006 May; 26(20):5309-19. PubMed ID: 16707783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking.
    Huo Y; Khatri N; Hou Q; Gilbert J; Wang G; Man HY
    J Neurochem; 2015 Sep; 134(6):1067-80. PubMed ID: 26077708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of N-methyl-D-aspartate receptors, AMPA receptors or metabotropic glutamate receptors leads to rapid internalization of AMPA receptors in cultured nucleus accumbens neurons.
    Mangiavacchi S; Wolf ME
    Eur J Neurosci; 2004 Aug; 20(3):649-57. PubMed ID: 15255976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties.
    Almqvist N; Bhatia R; Primbs G; Desai N; Banerjee S; Lal R
    Biophys J; 2004 Mar; 86(3):1753-62. PubMed ID: 14990502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subunit dependencies of N-methyl-D-aspartate (NMDA) receptor-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization.
    Tigaret CM; Thalhammer A; Rast GF; Specht CG; Auberson YP; Stewart MG; Schoepfer R
    Mol Pharmacol; 2006 Apr; 69(4):1251-9. PubMed ID: 16436589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BRAG2a Mediates mGluR-Dependent AMPA Receptor Internalization at Excitatory Postsynapses through the Interaction with PSD-95 and Endophilin 3.
    Fukaya M; Sugawara T; Hara Y; Itakura M; Watanabe M; Sakagami H
    J Neurosci; 2020 May; 40(22):4277-4296. PubMed ID: 32341099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.