BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17400693)

  • 1. Pore formation in a lipid bilayer under a tension ramp: modeling the distribution of rupture tensions.
    Boucher PA; Joós B; Zuckermann MJ; Fournier L
    Biophys J; 2007 Jun; 92(12):4344-55. PubMed ID: 17400693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore formation by a Bax-derived peptide: effect on the line tension of the membrane probed by AFM.
    García-Sáez AJ; Chiantia S; Salgado J; Schwille P
    Biophys J; 2007 Jul; 93(1):103-12. PubMed ID: 17416629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rupture of a biomembrane under dynamic surface tension.
    Bicout DJ; Kats E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031905. PubMed ID: 22587121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers.
    Ly HV; Longo ML
    Biophys J; 2004 Aug; 87(2):1013-33. PubMed ID: 15298907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore nucleation in mechanically stretched bilayer membranes.
    Wang ZJ; Frenkel D
    J Chem Phys; 2005 Oct; 123(15):154701. PubMed ID: 16252963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic tension spectroscopy and strength of biomembranes.
    Evans E; Heinrich V; Ludwig F; Rawicz W
    Biophys J; 2003 Oct; 85(4):2342-50. PubMed ID: 14507698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of membrane elasticity--a molecular level approach to one- and two-component fluid amphiphilic membranes, part I: theory.
    Hoffmann M
    Eur Phys J E Soft Matter; 2005 Feb; 16(2):111-23. PubMed ID: 15729503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids.
    Rawicz W; Smith BA; McIntosh TJ; Simon SA; Evans E
    Biophys J; 2008 Jun; 94(12):4725-36. PubMed ID: 18339739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.
    Hamai C; Cremer PS; Musser SM
    Biophys J; 2007 Mar; 92(6):1988-99. PubMed ID: 17189305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformability of multilamellar vesicles.
    Richterová M; Lisý V
    Gen Physiol Biophys; 2005 Mar; 24(1):89-97. PubMed ID: 15900089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of membrane elasticity--a molecular level approach to one- and two-component fluid amphiphilic membranes, part II: applications.
    Hoffmann M
    Eur Phys J E Soft Matter; 2005 Feb; 16(2):125-39. PubMed ID: 15729504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalously slow domain growth in fluid membranes with asymmetric transbilayer lipid distribution.
    Laradji M; Kumar PB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040901. PubMed ID: 16711778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice model for the kinetics of rupture of fluid bilayer membranes.
    Fournier L; Joós B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051908. PubMed ID: 12786179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis.
    Norouzi D; Müller MM; Deserno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061914. PubMed ID: 17280103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins.
    Venturoli M; Smit B; Sperotto MM
    Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shrinkage dynamics of a vesicle in surfactant solutions.
    Kaga M; Ohta T
    Eur Phys J E Soft Matter; 2006 Sep; 21(1):91-8. PubMed ID: 17089082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of amyloid beta-peptides on the lysis tension of lipid bilayer vesicles containing oxysterols.
    Kim DH; Frangos JA
    Biophys J; 2008 Jul; 95(2):620-8. PubMed ID: 18390616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers.
    Harmandaris VA; Deserno M
    J Chem Phys; 2006 Nov; 125(20):204905. PubMed ID: 17144738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pressure-dependence of the size of extruded vesicles.
    Patty PJ; Frisken BJ
    Biophys J; 2003 Aug; 85(2):996-1004. PubMed ID: 12885646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bridging microscopic and mesoscopic simulations of lipid bilayers.
    Ayton G; Voth GA
    Biophys J; 2002 Dec; 83(6):3357-70. PubMed ID: 12496103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.