BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17400735)

  • 1. Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum.
    Palmer KL; Brown SA; Whiteley M
    J Bacteriol; 2007 Jun; 189(12):4449-55. PubMed ID: 17400735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fosfomycin and tobramycin in combination downregulate nitrate reductase genes narG and narH, resulting in increased activity against Pseudomonas aeruginosa under anaerobic conditions.
    McCaughey G; Gilpin DF; Schneiders T; Hoffman LR; McKevitt M; Elborn JS; Tunney MM
    Antimicrob Agents Chemother; 2013 Nov; 57(11):5406-14. PubMed ID: 23959314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denitrification by cystic fibrosis pathogens - Stenotrophomonas maltophilia is dormant in sputum.
    Kolpen M; Kragh KN; Bjarnsholt T; Line L; Hansen CR; Dalbøge CS; Hansen N; Kühl M; Høiby N; Jensen PØ
    Int J Med Microbiol; 2015 Jan; 305(1):1-10. PubMed ID: 25441256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase.
    Van Alst NE; Sherrill LA; Iglewski BH; Haidaris CG
    Can J Microbiol; 2009 Oct; 55(10):1133-44. PubMed ID: 19935885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum.
    Palmer KL; Aye LM; Whiteley M
    J Bacteriol; 2007 Nov; 189(22):8079-87. PubMed ID: 17873029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptations of Pseudomonas aeruginosa to the cystic fibrosis lung environment can include deregulation of zwf, encoding glucose-6-phosphate dehydrogenase.
    Silo-Suh L; Suh SJ; Phibbs PV; Ohman DE
    J Bacteriol; 2005 Nov; 187(22):7561-8. PubMed ID: 16267280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology.
    Palmer KL; Mashburn LM; Singh PK; Whiteley M
    J Bacteriol; 2005 Aug; 187(15):5267-77. PubMed ID: 16030221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calprotectin-Mediated Zinc Chelation Inhibits Pseudomonas aeruginosa Protease Activity in Cystic Fibrosis Sputum.
    Vermilyea DM; Crocker AW; Gifford AH; Hogan DA
    J Bacteriol; 2021 Jun; 203(13):e0010021. PubMed ID: 33927050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mobA gene is required for assimilatory and respiratory nitrate reduction but not xanthine dehydrogenase activity in Pseudomonas aeruginosa.
    Noriega C; Hassett DJ; Rowe JJ
    Curr Microbiol; 2005 Dec; 51(6):419-24. PubMed ID: 16235022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrite reductase NirS is required for type III secretion system expression and virulence in the human monocyte cell line THP-1 by Pseudomonas aeruginosa.
    Van Alst NE; Wellington M; Clark VL; Haidaris CG; Iglewski BH
    Infect Immun; 2009 Oct; 77(10):4446-54. PubMed ID: 19651860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide.
    Yang H; Matewish M; Loubens I; Storey DG; Lam JS; Jin S
    Microbiology (Reading); 2000 Oct; 146 ( Pt 10)():2509-2519. PubMed ID: 11021926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions.
    Platt MD; Schurr MJ; Sauer K; Vazquez G; Kukavica-Ibrulj I; Potvin E; Levesque RC; Fedynak A; Brinkman FS; Schurr J; Hwang SH; Lau GW; Limbach PA; Rowe JJ; Lieberman MA; Barraud N; Webb J; Kjelleberg S; Hunt DF; Hassett DJ
    J Bacteriol; 2008 Apr; 190(8):2739-58. PubMed ID: 18203836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum.
    Fung C; Naughton S; Turnbull L; Tingpej P; Rose B; Arthur J; Hu H; Harmer C; Harbour C; Hassett DJ; Whitchurch CB; Manos J
    J Med Microbiol; 2010 Sep; 59(Pt 9):1089-1100. PubMed ID: 20522626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions.
    Hill D; Rose B; Pajkos A; Robinson M; Bye P; Bell S; Elkins M; Thompson B; Macleod C; Aaron SD; Harbour C
    J Clin Microbiol; 2005 Oct; 43(10):5085-90. PubMed ID: 16207967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung.
    Kirchner S; Fothergill JL; Wright EA; James CE; Mowat E; Winstanley C
    J Vis Exp; 2012 Jun; (64):e3857. PubMed ID: 22711026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress.
    Boes N; Schreiber K; Härtig E; Jaensch L; Schobert M
    J Bacteriol; 2006 Sep; 188(18):6529-38. PubMed ID: 16952944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration.
    Schreiber K; Krieger R; Benkert B; Eschbach M; Arai H; Schobert M; Jahn D
    J Bacteriol; 2007 Jun; 189(11):4310-4. PubMed ID: 17400734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of d- and l-Lactate and Metabolic Cross-Feeding.
    Lin YC; Cornell WC; Jo J; Price-Whelan A; Dietrich LEP
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206167
    [No Abstract]   [Full Text] [Related]  

  • 19. Bacterial cyanogenesis occurs in the cystic fibrosis lung.
    Sanderson K; Wescombe L; Kirov SM; Champion A; Reid DW
    Eur Respir J; 2008 Aug; 32(2):329-33. PubMed ID: 18480103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiotic Efficacy Testing in an Ex vivo Model of Pseudomonas aeruginosa and Staphylococcus aureus Biofilms in the Cystic Fibrosis Lung.
    Harrington NE; Sweeney E; Alav I; Allen F; Moat J; Harrison F
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33554970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.