These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17400896)

  • 21. Overexpression of phage-type RNA polymerase RpoTp in tobacco demonstrates its role in chloroplast transcription by recognizing a distinct promoter type.
    Liere K; Kaden D; Maliga P; Börner T
    Nucleic Acids Res; 2004; 32(3):1159-65. PubMed ID: 14973224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unraveling the complexities of plastid transcription in plants.
    Khan MS
    Trends Biotechnol; 2005 Nov; 23(11):535-8. PubMed ID: 16150501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.
    Nayak D; Guo Q; Sousa R
    J Biol Chem; 2009 May; 284(20):13641-13647. PubMed ID: 19307179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of human mitochondrial RNA polymerase.
    Ringel R; Sologub M; Morozov YI; Litonin D; Cramer P; Temiakov D
    Nature; 2011 Sep; 478(7368):269-73. PubMed ID: 21947009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensatory evolution in response to a novel RNA polymerase: orthologous replacement of a central network gene.
    Bull JJ; Springman R; Molineux IJ
    Mol Biol Evol; 2007 Apr; 24(4):900-8. PubMed ID: 17220516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A non-canonical multisubunit RNA polymerase encoded by the AR9 phage recognizes the template strand of its uracil-containing promoters.
    Sokolova M; Borukhov S; Lavysh D; Artamonova T; Khodorkovskii M; Severinov K
    Nucleic Acids Res; 2017 Jun; 45(10):5958-5967. PubMed ID: 28402520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of bacteriophage T7 RNA polymerase by linker insertion mutagenesis.
    Gross L; Chen WJ; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):488-505. PubMed ID: 1453459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection.
    Zhang X; Studier FW
    J Mol Biol; 2004 Jul; 340(4):707-30. PubMed ID: 15223315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual targeting of phage-type RNA polymerase to both mitochondria and plastids is due to alternative translation initiation in single transcripts.
    Kobayashi Y; Dokiya Y; Sugita M
    Biochem Biophys Res Commun; 2001 Dec; 289(5):1106-13. PubMed ID: 11741306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat.
    Ikeda TM; Gray MW
    Plant Mol Biol; 1999 Jul; 40(4):567-78. PubMed ID: 10480381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage.
    Yakunina M; Artamonova T; Borukhov S; Makarova KS; Severinov K; Minakhin L
    Nucleic Acids Res; 2015 Dec; 43(21):10411-20. PubMed ID: 26490960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor.
    Lopez PJ; Guillerez J; Sousa R; Dreyfus M
    J Mol Biol; 1998 Mar; 276(5):861-75. PubMed ID: 9566192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Termination and slippage by bacteriophage T7 RNA polymerase.
    Macdonald LE; Zhou Y; McAllister WT
    J Mol Biol; 1993 Aug; 232(4):1030-47. PubMed ID: 8371265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutant bacteriophage T7 RNA polymerases with altered termination properties.
    Lyakhov DL; He B; Zhang X; Studier FW; Dunn JJ; McAllister WT
    J Mol Biol; 1997 May; 269(1):28-40. PubMed ID: 9192998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis.
    Hricová A; Quesada V; Micol JL
    Plant Physiol; 2006 Jul; 141(3):942-56. PubMed ID: 16698900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and biochemical investigation of bacteriophage N4-encoded RNA polymerases.
    Lenneman BR; Rothman-Denes LB
    Biomolecules; 2015 Apr; 5(2):647-67. PubMed ID: 25924224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo.
    Hedtke B; Meixner M; Gillandt S; Richter E; Börner T; Weihe A
    Plant J; 1999 Mar; 17(5):557-61. PubMed ID: 10205908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products.
    Jin DJ; Turnbough CL
    J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chloroplast RNA polymerases: Role in chloroplast biogenesis.
    Börner T; Aleynikova AY; Zubo YO; Kusnetsov VV
    Biochim Biophys Acta; 2015 Sep; 1847(9):761-9. PubMed ID: 25680513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis for initiation of transcription from an RNA polymerase-promoter complex.
    Cheetham GM; Jeruzalmi D; Steitz TA
    Nature; 1999 May; 399(6731):80-3. PubMed ID: 10331394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.