These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 17401117)
1. Osmoregulation, ionoregulation and acid-base regulation by the gastrointestinal tract after feeding in the elasmobranch (Squalus acanthias). Wood CM; Kajimura M; Bucking C; Walsh PJ J Exp Biol; 2007 Apr; 210(Pt 8):1335-49. PubMed ID: 17401117 [TBL] [Abstract][Full Text] [Related]
2. Alkaline tide and nitrogen conservation after feeding in an elasmobranch (Squalus acanthias). Wood CM; Kajimura M; Mommsen TP; Walsh PJ J Exp Biol; 2005 Jul; 208(Pt 14):2693-705. PubMed ID: 16000539 [TBL] [Abstract][Full Text] [Related]
3. An in vitro study of urea, water, ion and CO2/HCO3- transport in the gastrointestinal tract of the dogfish shark (Squalus acanthias): the influence of feeding. Liew HJ; De Boeck G; Wood CM J Exp Biol; 2013 Jun; 216(Pt 11):2063-72. PubMed ID: 23678100 [TBL] [Abstract][Full Text] [Related]
4. The alkaline tide goes out and the nitrogen stays in after feeding in the dogfish shark, Squalus acanthias. Wood CM; Bucking C; Fitzpatrick J; Nadella S Respir Physiol Neurobiol; 2007 Nov; 159(2):163-70. PubMed ID: 17656159 [TBL] [Abstract][Full Text] [Related]
5. Acid-base responses to feeding and intestinal Cl- uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost. Wood CM; Bucking C; Grosell M J Exp Biol; 2010 Aug; 213(Pt 15):2681-92. PubMed ID: 20639430 [TBL] [Abstract][Full Text] [Related]
6. Post-prandial alkaline tide in freshwater rainbow trout: effects of meal anticipation on recovery from acid-base and ion regulatory disturbances. Cooper CA; Wilson RW J Exp Biol; 2008 Aug; 211(Pt 15):2542-50. PubMed ID: 18626090 [TBL] [Abstract][Full Text] [Related]
7. Feeding and osmoregulation: dual function of the marine teleost intestine. Taylor JR; Grosell M J Exp Biol; 2006 Aug; 209(Pt 15):2939-51. PubMed ID: 16857878 [TBL] [Abstract][Full Text] [Related]
8. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)? Wood CM; Kajimura M; Mommsen TP; Walsh PJ Physiol Biochem Zool; 2008; 81(3):278-87. PubMed ID: 18419554 [TBL] [Abstract][Full Text] [Related]
9. Post-prandial metabolic alkalosis in the seawater-acclimated trout: the alkaline tide comes in. Bucking C; Fitzpatrick JL; Nadella SR; Wood CM J Exp Biol; 2009 Jul; 212(Pt 14):2159-66. PubMed ID: 19561205 [TBL] [Abstract][Full Text] [Related]
10. Water dynamics in the digestive tract of the freshwater rainbow trout during the processing of a single meal. Bucking C; Wood CM J Exp Biol; 2006 May; 209(Pt 10):1883-93. PubMed ID: 16651554 [TBL] [Abstract][Full Text] [Related]
11. The intestinal response to feeding in seawater gulf toadfish, Opsanus beta, includes elevated base secretion and increased epithelial oxygen consumption. Taylor JR; Grosell M J Exp Biol; 2009 Dec; 212(Pt 23):3873-81. PubMed ID: 19915130 [TBL] [Abstract][Full Text] [Related]
12. Using omeprazole to link the components of the post-prandial alkaline tide in the spiny dogfish, Squalus acanthias. Wood CM; Schultz AG; Munger RS; Walsh PJ J Exp Biol; 2009 Mar; 212(Pt 5):684-92. PubMed ID: 19218520 [TBL] [Abstract][Full Text] [Related]
13. The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout. Bucking C; Wood CM J Exp Biol; 2008 Aug; 211(Pt 15):2533-41. PubMed ID: 18626089 [TBL] [Abstract][Full Text] [Related]
14. Control of rectal gland secretion by blood acid-base status in the intact dogfish shark (Squalus acanthias). Wood CM; Munger RS; Thompson J; Shuttleworth TJ Respir Physiol Neurobiol; 2007 May; 156(2):220-8. PubMed ID: 17049933 [TBL] [Abstract][Full Text] [Related]
15. Maintaining osmotic balance with an aglomerular kidney. McDonald MD; Grosell M Comp Biochem Physiol A Mol Integr Physiol; 2006 Apr; 143(4):447-58. PubMed ID: 16483812 [TBL] [Abstract][Full Text] [Related]
16. Copper toxicity in the spiny dogfish (Squalus acanthias): urea loss contributes to the osmoregulatory disturbance. De Boeck G; Hattink J; Franklin NM; Bucking CP; Wood S; Walsh PJ; Wood CM Aquat Toxicol; 2007 Aug; 84(2):133-41. PubMed ID: 17640748 [TBL] [Abstract][Full Text] [Related]
17. The influence of feeding and fasting on plasma metabolites in the dogfish shark (Squalus acanthias). Wood CM; Walsh PJ; Kajimura M; McClelland GB; Chew SF Comp Biochem Physiol A Mol Integr Physiol; 2010 Apr; 155(4):435-44. PubMed ID: 19782147 [TBL] [Abstract][Full Text] [Related]
18. Regulation of branchial V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias). Tresguerres M; Katoh F; Fenton H; Jasinska E; Goss GG J Exp Biol; 2005 Jan; 208(Pt 2):345-54. PubMed ID: 15634853 [TBL] [Abstract][Full Text] [Related]
19. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python. Secor SM; Taylor JR; Grosell M J Exp Biol; 2012 Jan; 215(Pt 1):185-96. PubMed ID: 22162867 [TBL] [Abstract][Full Text] [Related]
20. The effects of digesting a urea-rich meal on North Pacific spiny dogfish (Squalus acanthias suckleyi). Hoogenboom JL; Weinrauch AM; Wood CM; Anderson WG Comp Biochem Physiol A Mol Integr Physiol; 2020 Nov; 249():110775. PubMed ID: 32717287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]