BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17401142)

  • 1. The C terminus of apolipoprotein A-V modulates lipid-binding activity.
    Beckstead JA; Wong K; Gupta V; Wan CP; Cook VR; Weinberg RB; Weers PM; Ryan RO
    J Biol Chem; 2007 May; 282(21):15484-9. PubMed ID: 17401142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apolipoprotein A-V N-terminal domain lipid interaction properties in vitro explain the hypertriglyceridemic phenotype associated with natural truncation mutants.
    Wong-Mauldin K; Raussens V; Forte TM; Ryan RO
    J Biol Chem; 2009 Nov; 284(48):33369-76. PubMed ID: 19825998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminus of apolipoprotein A-V adopts a helix bundle molecular architecture.
    Wong K; Beckstead JA; Lee D; Weers PM; Guigard E; Kay CM; Ryan RO
    Biochemistry; 2008 Aug; 47(33):8768-74. PubMed ID: 18652480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The carboxyl-terminal segment of apolipoprotein A-V undergoes a lipid-induced conformational change.
    Mauldin K; Lee BL; Oleszczuk M; Sykes BD; Ryan RO
    Biochemistry; 2010 Jun; 49(23):4821-6. PubMed ID: 20469899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined N- and C-terminal truncation of human apolipoprotein A-I yields a folded, functional central domain.
    Beckstead JA; Block BL; Bielicki JK; Kay CM; Oda MN; Ryan RO
    Biochemistry; 2005 Mar; 44(11):4591-9. PubMed ID: 15766290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function studies of human apolipoprotein A-V: a regulator of plasma lipid homeostasis.
    Beckstead JA; Oda MN; Martin DD; Forte TM; Bielicki JK; Berger T; Luty R; Kay CM; Ryan RO
    Biochemistry; 2003 Aug; 42(31):9416-23. PubMed ID: 12899628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation and lipid binding of a C-terminal (198-243) peptide of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2007 Feb; 46(6):1624-34. PubMed ID: 17279626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and interfacial properties of human apolipoprotein A-V.
    Weinberg RB; Cook VR; Beckstead JA; Martin DD; Gallagher JW; Shelness GS; Ryan RO
    J Biol Chem; 2003 Sep; 278(36):34438-44. PubMed ID: 12810715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of apolipoprotein A-V structure and mode of plasma triacylglycerol regulation.
    Wong K; Ryan RO
    Curr Opin Lipidol; 2007 Jun; 18(3):319-24. PubMed ID: 17495607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific sequences in the N and C termini of apolipoprotein A-IV modulate its conformation and lipid association.
    Pearson K; Tubb MR; Tanaka M; Zhang XQ; Tso P; Weinberg RB; Davidson WS
    J Biol Chem; 2005 Nov; 280(46):38576-82. PubMed ID: 16159879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism.
    Lookene A; Beckstead JA; Nilsson S; Olivecrona G; Ryan RO
    J Biol Chem; 2005 Jul; 280(27):25383-7. PubMed ID: 15878877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid-free structure and stability of apolipoprotein A-I: probing the central region by mutation.
    Gorshkova IN; Liu T; Zannis VI; Atkinson D
    Biochemistry; 2002 Aug; 41(33):10529-39. PubMed ID: 12173940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of human apolipoprotein A-IV: a distinct domain architecture among exchangeable apolipoproteins with potential functional implications.
    Pearson K; Saito H; Woods SC; Lund-Katz S; Tso P; Phillips MC; Davidson WS
    Biochemistry; 2004 Aug; 43(33):10719-29. PubMed ID: 15311933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of apolipoprotein A-I structure using a cysteine-specific fluorescence probe.
    Tricerri MA; Behling Agree AK; Sanchez SA; Jonas A
    Biochemistry; 2000 Nov; 39(47):14682-91. PubMed ID: 11087425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphipathic alpha-helix bundle organization of lipid-free chicken apolipoprotein A-I.
    Kiss RS; Kay CM; Ryan RO
    Biochemistry; 1999 Apr; 38(14):4327-34. PubMed ID: 10194351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I.
    Tanaka M; Koyama M; Dhanasekaran P; Nguyen D; Nickel M; Lund-Katz S; Saito H; Phillips MC
    Biochemistry; 2008 Feb; 47(7):2172-80. PubMed ID: 18205410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional properties of full-length and truncated human proapolipoprotein AI expressed in escherichia coli.
    Pyle LE; Sawyer WH; Fujiwara Y; Mitchell A; Fidge NH
    Biochemistry; 1996 Sep; 35(37):12046-52. PubMed ID: 8810909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of central alpha-helices in human apolipoprotein A-I: effect on phospholipid association.
    Frank PG; Bergeron J; Emmanuel F; Lavigne JP; Sparks DL; Denèfle P; Rassart E; Marcel YL
    Biochemistry; 1997 Feb; 36(7):1798-806. PubMed ID: 9048564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial expression and characterization of chicken apolipoprotein A-I.
    Kiss RS; Kay CM; Ryan RO
    Protein Expr Purif; 1998 Apr; 12(3):353-60. PubMed ID: 9535703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.