These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1740122)

  • 21. Inhibition of assembly of bacterial cell division protein FtsZ by the hydrophobic dye 5,5'-bis-(8-anilino-1-naphthalenesulfonate).
    Yu XC; Margolin W
    J Biol Chem; 1998 Apr; 273(17):10216-22. PubMed ID: 9553072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of prodan-phosphatidylcholine, a new fluorescent probe, and its interactions with pancreatic and snake venom phospholipases A2.
    Hendrickson HS; Dumdei EJ; Batchelder AG; Carlson GL
    Biochemistry; 1987 Jun; 26(12):3697-703. PubMed ID: 3651404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopic and functional characterization of an environmentally sensitive fluorescent actin conjugate.
    Marriott G; Zechel K; Jovin TM
    Biochemistry; 1988 Aug; 27(17):6214-20. PubMed ID: 3219333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing of DNA-binding sites of Escherichia coli RecA protein utilizing 1-anilinonaphthalene-8-sulfonic acid.
    Masui R; Kuramitsu S
    Biochemistry; 1998 Sep; 37(35):12133-43. PubMed ID: 9724525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resonance energy transfer between tryptophan-214 in human serum albumin and acrylodan, prodan, and promen.
    González-Jiménez J; Cortijo M
    Protein J; 2004 Jul; 23(5):351-5. PubMed ID: 15328891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of spectral heterogeneity of prodan and laurdan solutions on the transfer of electronic energy to octadecyl rhodamine B.
    Kozyra KA; Heldt JR; Heldt J
    Biophys Chem; 2006 Apr; 121(1):57-64. PubMed ID: 16443320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A competition assay for DNA binding using the fluorescent probe ANS.
    Taylor IA; Kneale GG
    Methods Mol Biol; 2009; 543():577-87. PubMed ID: 19378188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin.
    Bhattacharyya M; Ray S; Bhattacharya S; Chakrabarti A
    J Biol Chem; 2004 Dec; 279(53):55080-8. PubMed ID: 15492010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of bis-ANS to Bacillus subtilis lipase: a combined computational and experimental investigation.
    Kamal MZ; Ali J; Rao NM
    Biochim Biophys Acta; 2013 Aug; 1834(8):1501-9. PubMed ID: 23639749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights on the behavior of PRODAN in homogeneous media and in large unilamellar vesicles.
    Moyano F; Biasutti MA; Silber JJ; Correa NM
    J Phys Chem B; 2006 Jun; 110(24):11838-46. PubMed ID: 16800486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational study of spectrin in presence of submolar concentrations of denaturants.
    Ray S; Bhattacharyya M; Chakrabarti A
    J Fluoresc; 2005 Jan; 15(1):61-70. PubMed ID: 15711878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of pressure on the Prodan fluorescence in bilayer membranes of phospholipids with varying acyl chain lengths.
    Kusube M; Matsuki H; Kaneshina S
    Colloids Surf B Biointerfaces; 2005 Apr; 42(1):79-88. PubMed ID: 15784329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of the anilinonaphthalenesulfonates on the alkylation of tubulin: correlation between the appearance of sulfhydryl groups and apolar binding sites.
    Luduena RF; Roach MC; Horowitz P
    Biochim Biophys Acta; 1986 Sep; 873(1):143-6. PubMed ID: 3509976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Usefulness of Fluorescent Probe Prodan To Gain Insight into the Polarity of Plant Cuticles.
    Stawinoga M; Sleiman M; Chastain J; Richard C
    J Agric Food Chem; 2015 Aug; 63(31):6932-8. PubMed ID: 26197715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding and relaxation behaviour of prodan and patman in phospholipid vesicles: a fluorescence and 1H NMR study.
    Hutterer R; Schneider FW; Sprinz H; Hof M
    Biophys Chem; 1996 Oct; 61(2-3):151-60. PubMed ID: 8956486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan.
    Kusube M; Tamai N; Matsuki H; Kaneshina S
    Biophys Chem; 2005 Oct; 117(3):199-206. PubMed ID: 15961215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative multiple binding of bisANS and daunomycin to tubulin.
    Ward LD; Timasheff SN
    Biochemistry; 1994 Oct; 33(39):11891-9. PubMed ID: 7918408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of vesicle size on the prodan fluorescence in diheptadecanoylphosphatidylcholine bilayer membrane under atmospheric and high pressures.
    Goto M; Sawaguchi H; Tamai N; Matsuki H; Kaneshina S
    Langmuir; 2010 Aug; 26(16):13377-84. PubMed ID: 20695581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the fluorescence emission properties of prodan in different reverse micellar environments.
    Sengupta B; Guharay J; Sengupta PK
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jun; 56A(7):1433-41. PubMed ID: 10888447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.