These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 1740128)
1. Effects of ions on the intrinsic activities of c-H-ras protein p21. A comparison with elongation factor Tu. Mistou MY; Cool RH; Parmeggiani A Eur J Biochem; 1992 Feb; 204(1):179-85. PubMed ID: 1740128 [TBL] [Abstract][Full Text] [Related]
2. Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain. Jensen M; Cool RH; Mortensen KK; Clark BF; Parmeggiani A Eur J Biochem; 1989 Jun; 182(2):247-55. PubMed ID: 2661226 [TBL] [Abstract][Full Text] [Related]
3. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes. Jacquet E; Parmeggiani A Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669 [TBL] [Abstract][Full Text] [Related]
4. Structure-function relationships in the GTP binding domain of EF-Tu: mutation of Val20, the residue homologous to position 12 in p21. Jacquet E; Parmeggiani A EMBO J; 1988 Sep; 7(9):2861-7. PubMed ID: 3181143 [TBL] [Abstract][Full Text] [Related]
5. Mg2+ is not catalytically required in the intrinsic and kirromycin-stimulated GTPase action of Thermus thermophilus EF-Tu. Rutthard H; Banerjee A; Makinen MW J Biol Chem; 2001 Jun; 276(22):18728-33. PubMed ID: 11274193 [TBL] [Abstract][Full Text] [Related]
6. Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A. Anborgh PH; Parmeggiani A J Biol Chem; 1993 Nov; 268(33):24622-8. PubMed ID: 8227020 [TBL] [Abstract][Full Text] [Related]
7. Effects of the antibiotic pulvomycin on the elongation factor Tu-dependent reactions. Comparison with other antibiotics. Anborgh PH; Okamura S; Parmeggiani A Biochemistry; 2004 Dec; 43(49):15550-6. PubMed ID: 15581367 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 alpha and mode of action of kirromycin. Crechet JB; Parmeggiani A Eur J Biochem; 1986 Dec; 161(3):655-60. PubMed ID: 3024979 [TBL] [Abstract][Full Text] [Related]
9. Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: its substitution by glutamine and alanine. Scarano G; Krab IM; Bocchini V; Parmeggiani A FEBS Lett; 1995 May; 365(2-3):214-8. PubMed ID: 7781781 [TBL] [Abstract][Full Text] [Related]
10. Functional-structural analysis of threonine 25, a residue coordinating the nucleotide-bound magnesium in elongation factor Tu. Krab IM; Parmeggiani A J Biol Chem; 1999 Apr; 274(16):11132-8. PubMed ID: 10196198 [TBL] [Abstract][Full Text] [Related]
11. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8. Nock S; Grillenbeck N; Ahmadian MR; Ribeiro S; Kreutzer R; Sprinzl M Eur J Biochem; 1995 Nov; 234(1):132-9. PubMed ID: 8529632 [TBL] [Abstract][Full Text] [Related]
12. Substitution of histidine-84 and the GTPase mechanism of elongation factor Tu. Cool RH; Parmeggiani A Biochemistry; 1991 Jan; 30(2):362-6. PubMed ID: 1899022 [TBL] [Abstract][Full Text] [Related]
13. Properties of a genetically engineered G domain of elongation factor Tu. Parmeggiani A; Swart GW; Mortensen KK; Jensen M; Clark BF; Dente L; Cortese R Proc Natl Acad Sci U S A; 1987 May; 84(10):3141-5. PubMed ID: 3554231 [TBL] [Abstract][Full Text] [Related]
14. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands. Cetin R; Anborgh PH; Cool RH; Parmeggiani A Biochemistry; 1998 Jan; 37(2):486-95. PubMed ID: 9425069 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional models of the GDP and GTP forms of the guanine nucleotide domain of Escherichia coli elongation factor Tu. Jurnak F; Heffron S; Schick B; Delaria K Biochim Biophys Acta; 1990 Aug; 1050(1-3):209-14. PubMed ID: 2119811 [TBL] [Abstract][Full Text] [Related]
16. Kirromycin drastically reduces the affinity of Escherichia coli elongation factor Tu for aminoacyl-tRNA. Abrahams JP; van Raaij MJ; Ott G; Kraal B; Bosch L Biochemistry; 1991 Jul; 30(27):6705-10. PubMed ID: 2065055 [TBL] [Abstract][Full Text] [Related]
17. Substitution of aspartic acid-80, a residue involved in coordination of magnesium, weakens the GTP binding and strongly enhances the GTPase of the G domain of elongation factor Tu. Harmark K; Anborgh PH; Merola M; Clark BF; Parmeggiani A Biochemistry; 1992 Aug; 31(32):7367-72. PubMed ID: 1510926 [TBL] [Abstract][Full Text] [Related]
18. Mapping the effector region in Thermus thermophilus elongation factor Tu. Peter ME; Schirmer NK; Reiser CO; Sprinzl M Biochemistry; 1990 Mar; 29(11):2876-84. PubMed ID: 2189498 [TBL] [Abstract][Full Text] [Related]
19. Studies on polypeptide-chain-elongation factors from an extreme thermophile, Thermus thermophilus HB8. 2. Catalytic properties. Arai K; Arai N; Nakamura S; Oshima T; Kaziro Y Eur J Biochem; 1978 Dec; 92(2):521-31. PubMed ID: 367783 [TBL] [Abstract][Full Text] [Related]
20. Effects of the mutation glycine-222----aspartic acid on the functions of elongation factor Tu. Swart GW; Parmeggiani A; Kraal B; Bosch L Biochemistry; 1987 Apr; 26(7):2047-54. PubMed ID: 3297141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]