These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17401369)

  • 1. Image-based multivariate profiling of drug responses from single cells.
    Loo LH; Wu LF; Altschuler SJ
    Nat Methods; 2007 May; 4(5):445-53. PubMed ID: 17401369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidimensional drug profiling by automated microscopy.
    Perlman ZE; Slack MD; Feng Y; Mitchison TJ; Wu LF; Altschuler SJ
    Science; 2004 Nov; 306(5699):1194-8. PubMed ID: 15539606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation and visualization of diverse cellular phenotypic responses in primary high-content screening.
    Kümmel A; Selzer P; Siebert D; Schmidt I; Reinhardt J; Götte M; Ibig-Rehm Y; Parker CN; Gabriel D
    J Biomol Screen; 2012 Jul; 17(6):843-9. PubMed ID: 22396475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image-based prediction of drug target in yeast.
    Ohnuki S; Okada H; Ohya Y
    Methods Mol Biol; 2015; 1263():319-27. PubMed ID: 25618355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image analysis benchmarking methods for high-content screen design.
    Fuller CJ; Straight AF
    J Microsc; 2010 May; 238(2):145-61. PubMed ID: 20529062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for analyzing [Ca2+] flux kinetics in high-throughput screening.
    Gribbon P; Chambers C; Palo K; Kupper J; Mueller J; Sewing A
    J Biomol Screen; 2006 Aug; 11(5):511-8. PubMed ID: 16760374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-based chemical screening.
    Carpenter AE
    Nat Chem Biol; 2007 Aug; 3(8):461-5. PubMed ID: 17637778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationalizing Secondary Pharmacology Screening Using Human Genetic and Pharmacological Evidence.
    Deaton AM; Fan F; Zhang W; Nguyen PA; Ward LD; Nioi P
    Toxicol Sci; 2019 Feb; 167(2):593-603. PubMed ID: 30346593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated image analysis for high-content screening and analysis.
    Shariff A; Kangas J; Coelho LP; Quinn S; Murphy RF
    J Biomol Screen; 2010 Aug; 15(7):726-34. PubMed ID: 20488979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery.
    Reisen F; Zhang X; Gabriel D; Selzer P
    J Biomol Screen; 2013 Dec; 18(10):1284-97. PubMed ID: 24045583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a high-content screening assay panel to accelerate mechanism of action studies for oncology research.
    Towne DL; Nicholl EE; Comess KM; Galasinski SC; Hajduk PJ; Abraham VC
    J Biomol Screen; 2012 Sep; 17(8):1005-17. PubMed ID: 22706350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-content analysis to leverage a robust phenotypic profiling approach to vascular modulation.
    Isherwood BJ; Walls RE; Roberts ME; Houslay TM; Brave SR; Barry ST; Carragher NO
    J Biomol Screen; 2013 Dec; 18(10):1246-59. PubMed ID: 24108119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries.
    Shankar M; Priyadharshini R; Gunasekaran P
    Biotechnol Lett; 2009 Aug; 31(8):1197-201. PubMed ID: 19360387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging.
    Walter T; Held M; Neumann B; Hériché JK; Conrad C; Pepperkok R; Ellenberg J
    J Struct Biol; 2010 Apr; 170(1):1-9. PubMed ID: 19854275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment.
    Ljosa V; Caie PD; Ter Horst R; Sokolnicki KL; Jenkins EL; Daya S; Roberts ME; Jones TR; Singh S; Genovesio A; Clemons PA; Carragher NO; Carpenter AE
    J Biomol Screen; 2013 Dec; 18(10):1321-9. PubMed ID: 24045582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building predictive models for mechanism-of-action classification from phenotypic assay data sets.
    Berg EL; Yang J; Polokoff MA
    J Biomol Screen; 2013 Dec; 18(10):1260-9. PubMed ID: 24088371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compound classification using image-based cellular phenotypes.
    Adams CL; Kutsyy V; Coleman DA; Cong G; Crompton AM; Elias KA; Oestreicher DR; Trautman JK; Vaisberg E
    Methods Enzymol; 2006; 414():440-68. PubMed ID: 17110206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chapter 17: bioimage informatics for systems pharmacology.
    Li F; Yin Z; Jin G; Zhao H; Wong ST
    PLoS Comput Biol; 2013 Apr; 9(4):e1003043. PubMed ID: 23633943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization.
    Tanabe K
    Sci Rep; 2016 Apr; 6():25095. PubMed ID: 27117592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of gap junction blockers using automated fluorescence microscopy imaging.
    Li Z; Yan Y; Powers EA; Ying X; Janjua K; Garyantes T; Baron B
    J Biomol Screen; 2003 Oct; 8(5):489-99. PubMed ID: 14567776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.