These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 17401373)

  • 41. Computational methods for microRNA target prediction.
    Watanabe Y; Tomita M; Kanai A
    Methods Enzymol; 2007; 427():65-86. PubMed ID: 17720479
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of cotton microRNAs and their targets.
    Zhang B; Wang Q; Wang K; Pan X; Liu F; Guo T; Cobb GP; Anderson TA
    Gene; 2007 Aug; 397(1-2):26-37. PubMed ID: 17574351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of the regulation of lin-41 during chick and mouse limb development.
    Lancman JJ; Caruccio NC; Harfe BD; Pasquinelli AE; Schageman JJ; Pertsemlidis A; Fallon JF
    Dev Dyn; 2005 Dec; 234(4):948-60. PubMed ID: 16245339
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins.
    Ding XC; Grosshans H
    EMBO J; 2009 Feb; 28(3):213-22. PubMed ID: 19131968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. miRNA_Targets: a database for miRNA target predictions in coding and non-coding regions of mRNAs.
    Kumar A; Wong AK; Tizard ML; Moore RJ; Lefèvre C
    Genomics; 2012 Dec; 100(6):352-6. PubMed ID: 22940442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2.
    Zhang L; Ding L; Cheung TH; Dong MQ; Chen J; Sewell AK; Liu X; Yates JR; Han M
    Mol Cell; 2007 Nov; 28(4):598-613. PubMed ID: 18042455
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.
    Lau NC; Lim LP; Weinstein EG; Bartel DP
    Science; 2001 Oct; 294(5543):858-62. PubMed ID: 11679671
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A guide through present computational approaches for the identification of mammalian microRNA targets.
    Sethupathy P; Megraw M; Hatzigeorgiou AG
    Nat Methods; 2006 Nov; 3(11):881-6. PubMed ID: 17060911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target.
    Lin SY; Johnson SM; Abraham M; Vella MC; Pasquinelli A; Gamberi C; Gottlieb E; Slack FJ
    Dev Cell; 2003 May; 4(5):639-50. PubMed ID: 12737800
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MicroRNAs in search of a target.
    Stefani G; Slack F
    Cold Spring Harb Symp Quant Biol; 2006; 71():129-34. PubMed ID: 17381288
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A small fortune.
    Smallridge R
    Nat Rev Mol Cell Biol; 2001 Dec; 2(12):867. PubMed ID: 11733752
    [No Abstract]   [Full Text] [Related]  

  • 52. Identification of Drosophila MicroRNA targets.
    Stark A; Brennecke J; Russell RB; Cohen SM
    PLoS Biol; 2003 Dec; 1(3):E60. PubMed ID: 14691535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two molecular features contribute to the Argonaute specificity for the microRNA and RNAi pathways in C. elegans.
    Jannot G; Boisvert ME; Banville IH; Simard MJ
    RNA; 2008 May; 14(5):829-35. PubMed ID: 18367718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An extensive class of small RNAs in Caenorhabditis elegans.
    Lee RC; Ambros V
    Science; 2001 Oct; 294(5543):862-4. PubMed ID: 11679672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dual regulation of the lin-14 target mRNA by the lin-4 miRNA.
    Shi Z; Hayes G; Ruvkun G
    PLoS One; 2013; 8(9):e75475. PubMed ID: 24058689
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A single spacer nucleotide determines the specificities of two mRNA regulatory proteins.
    Opperman L; Hook B; DeFino M; Bernstein DS; Wickens M
    Nat Struct Mol Biol; 2005 Nov; 12(11):945-51. PubMed ID: 16244662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences.
    Bonnet E; Wuyts J; Rouzé P; Van de Peer Y
    Bioinformatics; 2004 Nov; 20(17):2911-7. PubMed ID: 15217813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of microRNA targets.
    Rehmsmeier M
    Methods Mol Biol; 2006; 342():87-99. PubMed ID: 16957369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Incorporating structure to predict microRNA targets.
    Robins H; Li Y; Padgett RW
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):4006-9. PubMed ID: 15738385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions.
    Didiano D; Hobert O
    Nat Struct Mol Biol; 2006 Sep; 13(9):849-51. PubMed ID: 16921378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.