BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17401529)

  • 1. Effect of aldehydes derived from oxidative deamination and oxidative stress on beta-amyloid aggregation; pathological implications to Alzheimer's disease.
    Chen K; Kazachkov M; Yu PH
    J Neural Transm (Vienna); 2007; 114(6):835-9. PubMed ID: 17401529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential inplications of endogenous aldehydes in beta-amyloid misfolding, oligomerization and fibrillogenesis.
    Chen K; Maley J; Yu PH
    J Neurochem; 2006 Dec; 99(5):1413-24. PubMed ID: 17074066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deamination of methylamine and aminoacetone increases aldehydes and oxidative stress in rats.
    Deng Y; Boomsma F; Yu PH
    Life Sci; 1998; 63(23):2049-58. PubMed ID: 9839528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for in vivo scavenging by aminoguanidine of formaldehyde produced via semicarbazide-sensitive amine oxidase-mediated deamination.
    Kazachkov M; Chen K; Babiy S; Yu PH
    J Pharmacol Exp Ther; 2007 Sep; 322(3):1201-7. PubMed ID: 17596537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of cerebral vascular semicarbazide-sensitive amine oxidase to cerebral amyloid angiopathy in Alzheimer's disease.
    Jiang ZJ; Richardson JS; Yu PH
    Neuropathol Appl Neurobiol; 2008 Apr; 34(2):194-204. PubMed ID: 17971074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-talk between Aβ and endothelial SSAO/VAP-1 accelerates vascular damage and Aβ aggregation related to CAA-AD.
    Solé M; Miñano-Molina AJ; Unzeta M
    Neurobiol Aging; 2015 Feb; 36(2):762-75. PubMed ID: 25457560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid oxidation and modification of amyloid-β (Aβ) in vitro and in vivo.
    Ellis G; Fang E; Maheshwari M; Roltsch E; Holcomb L; Zimmer D; Martinez D; Murray IV
    J Alzheimers Dis; 2010; 22(2):593-607. PubMed ID: 20847409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and pathological implications of semicarbazide-sensitive amine oxidase.
    Yu PH; Wright S; Fan EH; Lun ZR; Gubisne-Harberle D
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):193-9. PubMed ID: 12686132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice.
    Schuessel K; Schäfer S; Bayer TA; Czech C; Pradier L; Müller-Spahn F; Müller WE; Eckert A
    Neurobiol Dis; 2005 Feb; 18(1):89-99. PubMed ID: 15649699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alzheimer's disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: increased oxidative stress and impaired long-term memory with anxiety-like behavior.
    Sharma S; Verma S; Kapoor M; Saini A; Nehru B
    Neurol Res; 2016 Sep; 38(9):838-50. PubMed ID: 27431920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation.
    Siegel SJ; Bieschke J; Powers ET; Kelly JW
    Biochemistry; 2007 Feb; 46(6):1503-10. PubMed ID: 17279615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid-β metabolite sensing: biochemical linking of glycation modification and misfolding.
    Fawver JN; Schall HE; Petrofes Chapa RD; Zhu X; Murray IV
    J Alzheimers Dis; 2012; 30(1):63-73. PubMed ID: 22406446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aβ induces oxidative stress in senescence-accelerated (SAMP8) mice.
    Takagane K; Nojima J; Mitsuhashi H; Suo S; Yanagihara D; Takaiwa F; Urano Y; Noguchi N; Ishiura S
    Biosci Biotechnol Biochem; 2015; 79(6):912-8. PubMed ID: 25612552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology.
    Barone E; Head E; Butterfield DA; Perluigi M
    Free Radic Biol Med; 2017 Oct; 111():262-269. PubMed ID: 27838436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The pathophysiology of Alzheimer's disease with special reference to "amyloid cascade hypothesis"].
    Tamaoka A
    Rinsho Byori; 2013 Nov; 61(11):1060-9. PubMed ID: 24450113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of formaldehyde and methylglyoxal in urine: involvement of semicarbazide-sensitive amine oxidase-mediated deamination in diabetic complications.
    Deng Y; Yu PH
    J Chromatogr Sci; 1999 Sep; 37(9):317-22. PubMed ID: 10497785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer's disease.
    Matsuoka Y; Picciano M; La Francois J; Duff K
    Neuroscience; 2001; 104(3):609-13. PubMed ID: 11440793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of cerebrovascular semicarbazide-sensitive amine oxidase in the pathogenesis of Alzheimer's disease and vascular dementia.
    Yu PH
    Med Hypotheses; 2001 Aug; 57(2):175-9. PubMed ID: 11461168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein cross-linkage induced by formaldehyde derived from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine.
    Gubisne-Haberle D; Hill W; Kazachkov M; Richardson JS; Yu PH
    J Pharmacol Exp Ther; 2004 Sep; 310(3):1125-32. PubMed ID: 15128865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BIIB042, a novel γ-secretase modulator, reduces amyloidogenic Aβ isoforms in primates and rodents and plaque pathology in a mouse model of Alzheimer's disease.
    Scannevin RH; Chollate S; Brennan MS; Snodgrass-Belt PA; Peng H; Xu L; Jung MY; Bussiere T; Arastu MF; Talreja T; Xin Z; Dunstan RW; Fahrer D; Rohde E; Dunah AW; Wang J; Kumaravel G; Taveras AG; Moore Arnold H; Rhodes KJ
    Neuropharmacology; 2016 Apr; 103():57-68. PubMed ID: 26690893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.