These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 17402710)
1. Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Georgakopoulou S; van der Zwan G; Bassi R; van Grondelle R; van Amerongen H; Croce R Biochemistry; 2007 Apr; 46(16):4745-54. PubMed ID: 17402710 [TBL] [Abstract][Full Text] [Related]
2. The Q(y) absorption spectrum of the light-harvesting complex II as determined by structure-based analysis of chlorophyll macrocycle deformations. Zucchelli G; Santabarbara S; Jennings RC Biochemistry; 2012 Apr; 51(13):2717-36. PubMed ID: 22417459 [TBL] [Abstract][Full Text] [Related]
3. Light absorption by the chlorophyll a-b complexes of photosystem II in a leaf with special reference to LHCII. Rivadossi A; Zucchelli G; Garlaschi FM; Jennings RC Photochem Photobiol; 2004; 80(3):492-8. PubMed ID: 15623336 [TBL] [Abstract][Full Text] [Related]
4. Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Dobrikova AG; Várkonyi Z; Krumova SB; Kovács L; Kostov GK; Todinova SJ; Busheva MC; Taneva SG; Garab G Biochemistry; 2003 Sep; 42(38):11272-80. PubMed ID: 14503877 [TBL] [Abstract][Full Text] [Related]
5. Lowest electronic states of the CP47 antenna protein complex of photosystem II: simulation of optical spectra and revised structural assignments. Reppert M; Acharya K; Neupane B; Jankowiak R J Phys Chem B; 2010 Sep; 114(36):11884-98. PubMed ID: 20722360 [TBL] [Abstract][Full Text] [Related]
6. Structure-based identification of energy sinks in plant light-harvesting complex II. Müh F; Madjet Mel-A; Renger T J Phys Chem B; 2010 Oct; 114(42):13517-35. PubMed ID: 20886872 [TBL] [Abstract][Full Text] [Related]
7. Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II. Reppert M; Zazubovich V; Dang NC; Seibert M; Jankowiak R J Phys Chem B; 2008 Aug; 112(32):9934-47. PubMed ID: 18642950 [TBL] [Abstract][Full Text] [Related]
8. Explaining the visible and near-infrared circular dichroism spectra of light-harvesting 1 complexes from purple bacteria: a modeling study. Georgakopoulou S; van Grondelle R; van der Zwan G J Phys Chem B; 2006 Feb; 110(7):3344-53. PubMed ID: 16494349 [TBL] [Abstract][Full Text] [Related]
9. Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Shibata Y; Tateishi S; Nakabayashi S; Itoh S; Tamiaki H Biochemistry; 2010 Sep; 49(35):7504-15. PubMed ID: 20701269 [TBL] [Abstract][Full Text] [Related]
10. Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences. Kleima FJ; Hobe S; Calkoen F; Urbanus ML; Peterman EJ; van Grondelle R; Paulsen H; van Amerongen H Biochemistry; 1999 May; 38(20):6587-96. PubMed ID: 10350477 [TBL] [Abstract][Full Text] [Related]
11. Chromophore-chromophore and chromophore-protein interactions in monomeric light-harvesting complex II of green plants studied by spectral hole burning and fluorescence line narrowing. Pieper J; Rätsep M; Irrgang KD; Freiberg A J Phys Chem B; 2009 Aug; 113(31):10870-80. PubMed ID: 19719274 [TBL] [Abstract][Full Text] [Related]
12. Modeling of optical spectra of the light-harvesting CP29 antenna complex of photosystem II--part II. Feng X; Kell A; Pieper J; Jankowiak R J Phys Chem B; 2013 Jun; 117(22):6593-602. PubMed ID: 23662835 [TBL] [Abstract][Full Text] [Related]
13. [Variability of light-induced circular dichroism spectra of photosystem I complexes of cyanobacteria]. Shubin VV; Roegner M; El-Mohsnawy E; Terekhova IV; Schlodder E; Karapetian NV Prikl Biokhim Mikrobiol; 2010; 46(3):299-307. PubMed ID: 20586282 [TBL] [Abstract][Full Text] [Related]
14. A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. Caffarri S; Passarini F; Bassi R; Croce R FEBS Lett; 2007 Oct; 581(24):4704-10. PubMed ID: 17850797 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale. Janik E; Maksymiec W; Mazur R; Garstka M; Gruszecki WI Plant Cell Physiol; 2010 Aug; 51(8):1330-40. PubMed ID: 20627948 [TBL] [Abstract][Full Text] [Related]
16. Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments. Renger T; Trostmann I; Theiss C; Madjet ME; Richter M; Paulsen H; Eichler HJ; Knorr A; Renger G J Phys Chem B; 2007 Sep; 111(35):10487-501. PubMed ID: 17696386 [TBL] [Abstract][Full Text] [Related]
17. Separation, purification, and characterization of polypeptide composition of subcomplexes of the main light-harvesting chlorophyll a/b-protein complex of photosystem II. Jackowski G Methods Mol Biol; 2004; 274():115-28. PubMed ID: 15187274 [TBL] [Abstract][Full Text] [Related]
18. Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I. Croce R; Mozzo M; Morosinotto T; Romeo A; Hienerwadel R; Bassi R Biochemistry; 2007 Mar; 46(12):3846-55. PubMed ID: 17326666 [TBL] [Abstract][Full Text] [Related]
19. Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Förster picture. Novoderezhkin V; Marin A; van Grondelle R Phys Chem Chem Phys; 2011 Oct; 13(38):17093-103. PubMed ID: 21866281 [TBL] [Abstract][Full Text] [Related]
20. Incorporation and analysis of LHCII in model systems. Gruszecki WI Methods Mol Biol; 2004; 274():173-81. PubMed ID: 15187279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]