These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 17402710)
21. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Pascal AA; Liu Z; Broess K; van Oort B; van Amerongen H; Wang C; Horton P; Robert B; Chang W; Ruban A Nature; 2005 Jul; 436(7047):134-7. PubMed ID: 16001075 [TBL] [Abstract][Full Text] [Related]
22. The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes. Wentworth M; Ruban AV; Horton P Biochemistry; 2004 Jan; 43(2):501-9. PubMed ID: 14717605 [TBL] [Abstract][Full Text] [Related]
23. Photophysical behavior and assignment of the low-energy chlorophyll states in the CP43 proximal antenna protein of higher plant photosystem II. Hughes JL; Picorel R; Seibert M; Krausz E Biochemistry; 2006 Oct; 45(40):12345-57. PubMed ID: 17014087 [TBL] [Abstract][Full Text] [Related]
24. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Liu Z; Yan H; Wang K; Kuang T; Zhang J; Gui L; An X; Chang W Nature; 2004 Mar; 428(6980):287-92. PubMed ID: 15029188 [TBL] [Abstract][Full Text] [Related]
25. Fingerprinting the macro-organisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Tóth TN; Rai N; Solymosi K; Zsiros O; Schröder WP; Garab G; van Amerongen H; Horton P; Kovács L Biochim Biophys Acta; 2016 Sep; 1857(9):1479-1489. PubMed ID: 27154055 [TBL] [Abstract][Full Text] [Related]
26. Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach. Zheng L; Su M; Wu X; Liu C; Qu C; Chen L; Huang H; Liu X; Hong F Biol Trace Elem Res; 2007; 120(1-3):273-83. PubMed ID: 17916980 [TBL] [Abstract][Full Text] [Related]
27. Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Angstrom crystal structure. Novoderezhkin VI; Palacios MA; van Amerongen H; van Grondelle R J Phys Chem B; 2005 May; 109(20):10493-504. PubMed ID: 16852271 [TBL] [Abstract][Full Text] [Related]
28. Supramolecular organization of the main photosynthetic antenna complex LHCII: a monomolecular layer study. Gruszecki WI; Janik E; Luchowski R; Kernen P; Grudzinski W; Gryczynski I; Gryczynski Z Langmuir; 2009 Aug; 25(16):9384-91. PubMed ID: 19382785 [TBL] [Abstract][Full Text] [Related]
29. Photosynthetic acclimation: structural reorganisation of light harvesting antenna--role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. Kargul J; Barber J FEBS J; 2008 Mar; 275(6):1056-68. PubMed ID: 18318833 [TBL] [Abstract][Full Text] [Related]
30. Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Simonetto R; Crimi M; Sandonà D; Croce R; Cinque G; Breton J; Bassi R Biochemistry; 1999 Oct; 38(40):12974-83. PubMed ID: 10529167 [TBL] [Abstract][Full Text] [Related]
31. Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes. Georgakopoulou S; van der Zwan G; Olsen JD; Hunter CN; Niederman RA; van Grondelle R J Phys Chem B; 2006 Feb; 110(7):3354-61. PubMed ID: 16494350 [TBL] [Abstract][Full Text] [Related]
33. Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes. Janosi L; Kosztin I; Damjanović A J Chem Phys; 2006 Jul; 125(1):014903. PubMed ID: 16863329 [TBL] [Abstract][Full Text] [Related]
34. Circular dichroism of carotenoids in bacterial light-harvesting complexes: experiments and modeling. Georgakopoulou S; van Grondelle R; van der Zwan G Biophys J; 2004 Nov; 87(5):3010-22. PubMed ID: 15326029 [TBL] [Abstract][Full Text] [Related]
35. Organization of the pigment molecules in the chlorophyll a/b/c containing alga Mantoniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy. Goss R; Wilhelm C; Garab G Biochim Biophys Acta; 2000 Apr; 1457(3):190-9. PubMed ID: 10773164 [TBL] [Abstract][Full Text] [Related]
36. Pigment interactions in light-harvesting complex II in different molecular environments. Akhtar P; Dorogi M; Pawlak K; Kovács L; Bóta A; Kiss T; Garab G; Lambrev PH J Biol Chem; 2015 Feb; 290(8):4877-4886. PubMed ID: 25525277 [TBL] [Abstract][Full Text] [Related]
37. Importance of trimer-trimer interactions for the native state of the plant light-harvesting complex II. Lambrev PH; Várkonyi Z; Krumova S; Kovács L; Miloslavina Y; Holzwarth AR; Garab G Biochim Biophys Acta; 2007 Jun; 1767(6):847-53. PubMed ID: 17321492 [TBL] [Abstract][Full Text] [Related]
38. Physical origins and models of energy transfer in photosynthetic light-harvesting. Novoderezhkin VI; van Grondelle R Phys Chem Chem Phys; 2010 Jul; 12(27):7352-65. PubMed ID: 20532406 [TBL] [Abstract][Full Text] [Related]
39. Probing the pigment binding sites in LHCII with resonance Raman spectroscopy: The effect of mutations at S123. Kish E; Wang K; Llansola-Portoles MJ; Ilioaia C; Pascal AA; Robert B; Yang C Biochim Biophys Acta; 2016 Sep; 1857(9):1490-1496. PubMed ID: 27267584 [TBL] [Abstract][Full Text] [Related]
40. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Kirchhoff H; Haase W; Wegner S; Danielsson R; Ackermann R; Albertsson PA Biochemistry; 2007 Oct; 46(39):11169-76. PubMed ID: 17845010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]