BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 17403375)

  • 1. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver.
    Burgess SC; He T; Yan Z; Lindner J; Sherry AD; Malloy CR; Browning JD; Magnuson MA
    Cell Metab; 2007 Apr; 5(4):313-20. PubMed ID: 17403375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis.
    Méndez-Lucas A; Duarte JA; Sunny NE; Satapati S; He T; Fu X; Bermúdez J; Burgess SC; Perales JC
    J Hepatol; 2013 Jul; 59(1):105-13. PubMed ID: 23466304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase.
    Burgess SC; Hausler N; Merritt M; Jeffrey FM; Storey C; Milde A; Koshy S; Lindner J; Magnuson MA; Malloy CR; Sherry AD
    J Biol Chem; 2004 Nov; 279(47):48941-9. PubMed ID: 15347677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.
    Stark R; Guebre-Egziabher F; Zhao X; Feriod C; Dong J; Alves TC; Ioja S; Pongratz RL; Bhanot S; Roden M; Cline GW; Shulman GI; Kibbey RG
    J Biol Chem; 2014 Mar; 289(11):7257-63. PubMed ID: 24497630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?
    Stark R; Kibbey RG
    Biochim Biophys Acta; 2014 Apr; 1840(4):1313-30. PubMed ID: 24177027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism.
    She P; Shiota M; Shelton KD; Chalkley R; Postic C; Magnuson MA
    Mol Cell Biol; 2000 Sep; 20(17):6508-17. PubMed ID: 10938127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multitissue 2H/13C flux analysis reveals reciprocal upregulation of renal gluconeogenesis in hepatic PEPCK-C-knockout mice.
    Rahim M; Hasenour CM; Bednarski TK; Hughey CC; Wasserman DH; Young JD
    JCI Insight; 2021 Jun; 6(12):. PubMed ID: 34156032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression.
    Hanson RW; Reshef L
    Annu Rev Biochem; 1997; 66():581-611. PubMed ID: 9242918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia increases the rate of renal gluconeogenesis via hypoxia-inducible factor-1-dependent activation of phosphoenolpyruvate carboxykinase expression.
    Owczarek A; Gieczewska K; Jarzyna R; Jagielski AK; Kiersztan A; Gruza A; Winiarska K
    Biochimie; 2020; 171-172():31-37. PubMed ID: 32045650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice.
    Gómez-Valadés AG; Méndez-Lucas A; Vidal-Alabró A; Blasco FX; Chillon M; Bartrons R; Bermúdez J; Perales JC
    Diabetes; 2008 Aug; 57(8):2199-210. PubMed ID: 18443203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin A regulates genes involved in hepatic gluconeogenesis in mice: phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
    Shin DJ; McGrane MM
    J Nutr; 1997 Jul; 127(7):1274-8. PubMed ID: 9202079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine.
    Potts A; Uchida A; Deja S; Berglund ED; Kucejova B; Duarte JA; Fu X; Browning JD; Magnuson MA; Burgess SC
    Am J Physiol Gastrointest Liver Physiol; 2018 Aug; 315(2):G249-G258. PubMed ID: 29631378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.
    Oda H; Okuda Y; Yoshida Y; Kimura N; Kakinuma A
    Biochem Biophys Res Commun; 2015 Oct; 466(3):306-11. PubMed ID: 26348778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough.
    Aschenbach JR; Kristensen NB; Donkin SS; Hammon HM; Penner GB
    IUBMB Life; 2010 Dec; 62(12):869-77. PubMed ID: 21171012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription factor CCAAT/enhancer-binding protein beta regulates gluconeogenesis and phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes.
    Arizmendi C; Liu S; Croniger C; Poli V; Friedman JE
    J Biol Chem; 1999 May; 274(19):13033-40. PubMed ID: 10224054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoenolpyruvate carboxykinase cytosolic and mitochondrial isoforms are expressed and active during hypoxia in the white shrimp Litopenaeus vannamei.
    Reyes-Ramos CA; Peregrino-Uriarte AB; Cota-Ruiz K; Valenzuela-Soto EM; Leyva-Carrillo L; Yepiz-Plascencia G
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Dec; 226():1-9. PubMed ID: 30107223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual specificity MAPK phosphatase 3 activates PEPCK gene transcription and increases gluconeogenesis in rat hepatoma cells.
    Xu H; Yang Q; Shen M; Huang X; Dembski M; Gimeno R; Tartaglia LA; Kapeller R; Wu Z
    J Biol Chem; 2005 Oct; 280(43):36013-8. PubMed ID: 16126724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of gluconeogenic genes during intense/prolonged exercise: hormone-independent effect of muscle-derived IL-6 on hepatic tissue and PEPCK mRNA.
    Banzet S; Koulmann N; Simler N; Sanchez H; Chapot R; Serrurier B; Peinnequin A; Bigard X
    J Appl Physiol (1985); 2009 Dec; 107(6):1830-9. PubMed ID: 19850730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose metabolism in transgenic mice containing a chimeric P-enolpyruvate carboxykinase/bovine growth hormone gene.
    Valera A; Rodriguez-Gil JE; Yun JS; McGrane MM; Hanson RW; Bosch F
    FASEB J; 1993 Jun; 7(9):791-800. PubMed ID: 8330686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apolipoprotein A-IV reduces hepatic gluconeogenesis through nuclear receptor NR1D1.
    Li X; Xu M; Wang F; Kohan AB; Haas MK; Yang Q; Lou D; Obici S; Davidson WS; Tso P
    J Biol Chem; 2014 Jan; 289(4):2396-404. PubMed ID: 24311788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.