These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17403657)

  • 21. Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest.
    Oguchi R; Hikosaka K; Hiura T; Hirose T
    Oecologia; 2006 Oct; 149(4):571-82. PubMed ID: 16832649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling the seasonal changes in the gas exchange response to CO
    Greer DH
    Plant Physiol Biochem; 2019 Sep; 142():372-383. PubMed ID: 31400541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO(2) enrichment.
    Bader MK; Siegwolf R; Körner C
    Planta; 2010 Oct; 232(5):1115-25. PubMed ID: 20700744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest.
    Oguchi R; Hiura T; Hikosaka K
    Tree Physiol; 2017 Aug; 37(8):1113-1127. PubMed ID: 28431185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate.
    Greer DH; Weedon MM
    Plant Cell Environ; 2012 Jun; 35(6):1050-64. PubMed ID: 22150771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.
    Scafaro AP; Xiang S; Long BM; Bahar NHA; Weerasinghe LK; Creek D; Evans JR; Reich PB; Atkin OK
    Glob Chang Biol; 2017 Jul; 23(7):2783-2800. PubMed ID: 27859952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal changes in the photosynthetic capacity of canopy oak (Quercus robur) leaves: the impact of slow development on annual carbon uptake.
    Morecroft MD; Stokes VJ; Morison JI
    Int J Biometeorol; 2003 Aug; 47(4):221-6. PubMed ID: 12733054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seasonal trends in photosynthesis and leaf traits in scarlet oak.
    Burnett AC; Serbin SP; Lamour J; Anderson J; Davidson KJ; Yang D; Rogers A
    Tree Physiol; 2021 Aug; 41(8):1413-1424. PubMed ID: 33611562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic activity in relation to a gradient of leaf nitrogen content within a canopy of Siebold's beech and Japanese oak saplings under elevated ozone.
    Watanabe M; Hoshika Y; Inada N; Koike T
    Sci Total Environ; 2018 Sep; 636():1455-1462. PubMed ID: 29913605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest.
    van de Weg MJ; Meir P; Grace J; Ramos GD
    Oecologia; 2012 Jan; 168(1):23-34. PubMed ID: 21833645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed.
    Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D
    Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seasonal and temperature dependence of photosynthesis and respiration for two co-occurring broad-leaved tree species with contrasting leaf phenology.
    Dungan RJ; Whitehead D; Duncan RP
    Tree Physiol; 2003 Jun; 23(8):561-8. PubMed ID: 12730048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate.
    Hikosaka K; Ishikawa K; Borjigidai A; Muller O; Onoda Y
    J Exp Bot; 2006; 57(2):291-302. PubMed ID: 16364948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient.
    Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y
    Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulations and observations of patchy stomatal behavior in leaves of Quercus crispula, a cool-temperate deciduous broad-leaved tree species.
    Kamakura M; Kosugi Y; Muramatsu K; Muraoka H
    J Plant Res; 2012 May; 125(3):339-49. PubMed ID: 22020695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photosynthetic acclimation to dynamic changes in environmental conditions associated with deciduous overstory phenology in Daphniphyllum humile, an evergreen understory shrub.
    Katahata S; Naramoto M; Kakubari Y; Mukai Y
    Tree Physiol; 2005 Apr; 25(4):437-45. PubMed ID: 15687092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling photosynthesis in olive leaves under drought conditions.
    Díaz-Espejo A; Walcroft AS; Fernández JE; Hafridi B; Palomo MJ; Girón IF
    Tree Physiol; 2006 Nov; 26(11):1445-56. PubMed ID: 16877329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests.
    Wu J; Serbin SP; Xu X; Albert LP; Chen M; Meng R; Saleska SR; Rogers A
    Glob Chang Biol; 2017 Nov; 23(11):4814-4827. PubMed ID: 28418158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches.
    Warren CR; Dreyer E
    J Exp Bot; 2006; 57(12):3057-67. PubMed ID: 16882645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest.
    Sperlich D; Chang CT; Peñuelas J; Gracia C; Sabaté S
    Tree Physiol; 2015 May; 35(5):501-20. PubMed ID: 25836361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.