BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17403671)

  • 1. Thiazole synthase from Escherichia coli: an investigation of the substrates and purified proteins required for activity in vitro.
    Kriek M; Martins F; Leonardi R; Fairhurst SA; Lowe DJ; Roach PL
    J Biol Chem; 2007 Jun; 282(24):17413-23. PubMed ID: 17403671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic activity of the anaerobic tyrosine lyase required for thiamine biosynthesis in Escherichia coli.
    Challand MR; Martins FT; Roach PL
    J Biol Chem; 2010 Feb; 285(8):5240-8. PubMed ID: 19923213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity.
    Leonardi R; Roach PL
    J Biol Chem; 2004 Apr; 279(17):17054-62. PubMed ID: 14757766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biosynthesis of the thiazole phosphate moiety of thiamin: the sulfur transfer mediated by the sulfur carrier protein ThiS.
    Dorrestein PC; Zhai H; McLafferty FW; Begley TP
    Chem Biol; 2004 Oct; 11(10):1373-81. PubMed ID: 15489164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of ThiH, a member of the radical S-adenosylmethionine (AdoMet) protein superfamily.
    Martinez-Gomez NC; Robers M; Downs DM
    J Biol Chem; 2004 Sep; 279(39):40505-10. PubMed ID: 15271986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiamin biosynthesis in Escherichia coli. Identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation.
    Taylor SV; Kelleher NL; Kinsland C; Chiu HJ; Costello CA; Backstrom AD; McLafferty FW; Begley TP
    J Biol Chem; 1998 Jun; 273(26):16555-60. PubMed ID: 9632726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12.
    Vander Horn PB; Backstrom AD; Stewart V; Begley TP
    J Bacteriol; 1993 Feb; 175(4):982-92. PubMed ID: 8432721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex.
    Leonardi R; Fairhurst SA; Kriek M; Lowe DJ; Roach PL
    FEBS Lett; 2003 Mar; 539(1-3):95-9. PubMed ID: 12650933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further investigation on the turnover of Escherichia coli biotin synthase with dethiobiotin and 9-mercaptodethiobiotin as substrates.
    Tse Sum Bui B; Lotierzo M; Escalettes F; Florentin D; Marquet A
    Biochemistry; 2004 Dec; 43(51):16432-41. PubMed ID: 15610037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein residues that control the reaction trajectory in S-adenosylmethionine radical enzymes: mutagenesis of asparagine 153 and aspartate 155 in Escherichia coli biotin synthase.
    Farrar CE; Jarrett JT
    Biochemistry; 2009 Mar; 48(11):2448-58. PubMed ID: 19199517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of Thiamin Pyrophosphate.
    Jurgenson CT; Ealick SE; Begley TP
    EcoSal Plus; 2009 Aug; 3(2):. PubMed ID: 26443755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of the nitrogen atom in the thiazole ring of thiamine in Escherichia coli.
    White RH; Rudolph FB
    Biochim Biophys Acta; 1978 Aug; 542(2):340-7. PubMed ID: 356892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis.
    Lehmann C; Begley TP; Ealick SE
    Biochemistry; 2006 Jan; 45(1):11-9. PubMed ID: 16388576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli lipoyl synthase binds two distinct [4Fe-4S] clusters per polypeptide.
    Cicchillo RM; Lee KH; Baleanu-Gogonea C; Nesbitt NM; Krebs C; Booker SJ
    Biochemistry; 2004 Sep; 43(37):11770-81. PubMed ID: 15362861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein--protein conjugate that is functionally analogous to the ubiquitin/E1 complex.
    Xi J; Ge Y; Kinsland C; McLafferty FW; Begley TP
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8513-8. PubMed ID: 11438688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biosynthesis of the thiazole phosphate moiety of thiamin (vitamin B1): the early steps catalyzed by thiazole synthase.
    Dorrestein PC; Zhai H; Taylor SV; McLafferty FW; Begley TP
    J Am Chem Soc; 2004 Mar; 126(10):3091-6. PubMed ID: 15012138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of adenosylmethionine-dependent radical generation in biotin synthase: a kinetic and thermodynamic analysis of substrate binding to active and inactive forms of BioB.
    Ugulava NB; Frederick KK; Jarrett JT
    Biochemistry; 2003 Mar; 42(9):2708-19. PubMed ID: 12614166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Biosynthesis of the Thiazole Moiety of Thiamin in the Archaeon Halobacterium salinarum.
    Hayashi M; Kijima Y; Tazuya-Murayama K; Yamada K
    J Nutr Sci Vitaminol (Tokyo); 2015; 61(3):270-4. PubMed ID: 26226965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of AdoMet radical enzyme 7-carboxy-7-deazaguanine synthase from Escherichia coli suggests how modifications near [4Fe-4S] cluster engender flavodoxin specificity.
    Grell TAJ; Bell BN; Nguyen C; Dowling DP; Bruender NA; Bandarian V; Drennan CL
    Protein Sci; 2019 Jan; 28(1):202-215. PubMed ID: 30341796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of Escherichia coli ThiF.
    Duda DM; Walden H; Sfondouris J; Schulman BA
    J Mol Biol; 2005 Jun; 349(4):774-86. PubMed ID: 15896804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.