BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17404110)

  • 1. Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia.
    Raponi M; Harousseau JL; Lancet JE; Löwenberg B; Stone R; Zhang Y; Rackoff W; Wang Y; Atkins D
    Clin Cancer Res; 2007 Apr; 13(7):2254-60. PubMed ID: 17404110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase II trial and prediction of response of single agent tipifarnib in patients with relapsed/refractory mantle cell lymphoma: a Groupe d'Etude des Lymphomes de l'Adulte trial.
    Rolland D; Ribrag V; Haioun C; Ghesquieres H; Jardin F; Bouabdallah R; Franchi P; Briere J; De Kerviler E; Chassagne-Clement C; Raponi M; Houlgatte R; Jais JP; Thieblemont C
    Cancer Chemother Pharmacol; 2010 Mar; 65(4):781-90. PubMed ID: 19960345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia.
    Raponi M; Lancet JE; Fan H; Dossey L; Lee G; Gojo I; Feldman EJ; Gotlib J; Morris LE; Greenberg PL; Wright JJ; Harousseau JL; Löwenberg B; Stone RM; De Porre P; Wang Y; Karp JE
    Blood; 2008 Mar; 111(5):2589-96. PubMed ID: 18160667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining simvastatin with the farnesyltransferase inhibitor tipifarnib results in an enhanced cytotoxic effect in a subset of primary CD34+ acute myeloid leukemia samples.
    van der Weide K; de Jonge-Peeters SD; Kuipers F; de Vries EG; Vellenga E
    Clin Cancer Res; 2009 May; 15(9):3076-83. PubMed ID: 19383813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microarray analysis reveals genetic pathways modulated by tipifarnib in acute myeloid leukemia.
    Raponi M; Belly RT; Karp JE; Lancet JE; Atkins D; Wang Y
    BMC Cancer; 2004 Aug; 4():56. PubMed ID: 15329151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells.
    Ding H; McDonald JS; Yun S; Schneider PA; Peterson KL; Flatten KS; Loegering DA; Oberg AL; Riska SM; Huang S; Sinicrope FA; Adjei AA; Karp JE; Meng XW; Kaufmann SH
    Haematologica; 2014 Jan; 99(1):60-9. PubMed ID: 23996484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tipifarnib as maintenance therapy did not improve disease-free survival in patients with acute myelogenous leukemia at high risk of relapse: Results of the phase III randomized E2902 trial.
    Luger SM; Wang VX; Rowe JM; Litzow MR; Paietta E; Ketterling RP; Lazarus H; Rybka WB; Craig MD; Karp J; Cooper BW; Makary AZ; Kaminer LS; Appelbaum FR; Larson RA; Tallman MS
    Leuk Res; 2021 Dec; 111():106736. PubMed ID: 34773794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia.
    Yanamandra N; Colaco NM; Parquet NA; Buzzeo RW; Boulware D; Wright G; Perez LE; Dalton WS; Beaupre DM
    Clin Cancer Res; 2006 Jan; 12(2):591-9. PubMed ID: 16428505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene-expression profiles and their association with drug resistance in adult acute myeloid leukemia.
    Heuser M; Wingen LU; Steinemann D; Cario G; von Neuhoff N; Tauscher M; Bullinger L; Krauter J; Heil G; Döhner H; Schlegelberger B; Ganser A
    Haematologica; 2005 Nov; 90(11):1484-92. PubMed ID: 16266895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro profiling of the sensitivity of pediatric leukemia cells to tipifarnib: identification of T-cell ALL and FAB M5 AML as the most sensitive subsets.
    Goemans BF; Zwaan CM; Harlow A; Loonen AH; Gibson BE; Hählen K; Reinhardt D; Creutzig U; Heinrich MC; Kaspers GJ
    Blood; 2005 Nov; 106(10):3532-7. PubMed ID: 16051737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase II trial of tipifarnib as maintenance therapy in first complete remission in adults with acute myelogenous leukemia and poor-risk features.
    Karp JE; Smith BD; Gojo I; Lancet JE; Greer J; Klein M; Morris L; Levis MJ; Gore SD; Wright JJ; Garrett-Mayer E
    Clin Cancer Res; 2008 May; 14(10):3077-82. PubMed ID: 18483374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active oral regimen for elderly adults with newly diagnosed acute myelogenous leukemia: a preclinical and phase 1 trial of the farnesyltransferase inhibitor tipifarnib (R115777, Zarnestra) combined with etoposide.
    Karp JE; Flatten K; Feldman EJ; Greer JM; Loegering DA; Ricklis RM; Morris LE; Ritchie E; Smith BD; Ironside V; Talbott T; Roboz G; Le SB; Meng XW; Schneider PA; Dai NT; Adjei AA; Gore SD; Levis MJ; Wright JJ; Garrett-Mayer E; Kaufmann SH
    Blood; 2009 May; 113(20):4841-52. PubMed ID: 19109557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tipifarnib in acute myeloid leukemia.
    Burnett AK; Kell J
    Drugs Today (Barc); 2007 Nov; 43(11):795-800. PubMed ID: 18174965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phase 1 trial dose-escalation study of tipifarnib on a week-on, week-off schedule in relapsed, refractory or high-risk myeloid leukemia.
    Kirschbaum MH; Synold T; Stein AS; Tuscano J; Zain JM; Popplewell L; Karanes C; O'Donnell MR; Pulone B; Rincon A; Wright J; Frankel P; Forman SJ; Newman EM
    Leukemia; 2011 Oct; 25(10):1543-7. PubMed ID: 21625235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of a human BCR/ABL-positive cell line, K562/RR, resistant to the farnesyltransferase inhibition by tipifarnib.
    Miyoshi T; Nagai T; Kikuchi S; Ohmine K; Nakamura M; Hanafusa T; Komatsu N; Ozawa K
    Exp Hematol; 2007 Sep; 35(9):1358-65. PubMed ID: 17656006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of tipifarnib sensitivity biomarkers in T-cell acute lymphoblastic leukemia and T-cell lymphoma.
    Alonso-Alonso R; Mondéjar R; Martínez N; García-Diaz N; Pérez C; Merino D; Rodríguez M; Esteve-Codina A; Fuste B; Gut M; Burrows F; Scholz C; Vaqué JP; Gualberto A; Piris MÁ
    Sci Rep; 2020 Apr; 10(1):6721. PubMed ID: 32317694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia.
    Harousseau JL; Lancet JE; Reiffers J; Lowenberg B; Thomas X; Huguet F; Fenaux P; Zhang S; Rackoff W; De Porre P; Stone R;
    Blood; 2007 Jun; 109(12):5151-6. PubMed ID: 17351110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated FOSB-expression; a potential marker of valproate sensitivity in AML.
    Khanim FL; Bradbury CA; Arrazi J; Hayden RE; Rye A; Basu S; MacWhannell A; Sawers A; Griffiths M; Cook M; Freeman S; Nightingale KP; Grimwade D; Falciani F; Turner BM; Bunce CM; Craddock C
    Br J Haematol; 2009 Feb; 144(3):332-41. PubMed ID: 19036090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four different regimens of farnesyltransferase inhibitor tipifarnib in older, untreated acute myeloid leukemia patients: North American Intergroup Phase II study SWOG S0432.
    Erba HP; Othus M; Walter RB; Kirschbaum MH; Tallman MS; Larson RA; Slovak ML; Kopecky KJ; Gundacker HM; Appelbaum FR
    Leuk Res; 2014 Mar; 38(3):329-33. PubMed ID: 24411921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of farnesyltransferase activity in acute myeloid leukemia and myelodysplastic syndrome: current understanding and recommended use of tipifarnib.
    Epling-Burnette PK; Loughran TP
    Expert Opin Investig Drugs; 2010 May; 19(5):689-98. PubMed ID: 20402600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.