These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 1740436)
1. Identification of an essential tyrosine residue in the catalytic site of a chitinase isolated from Zea mays that is selectively modified during inactivation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Verburg JG; Smith CE; Lisek CA; Huynh QK J Biol Chem; 1992 Feb; 267(6):3886-93. PubMed ID: 1740436 [TBL] [Abstract][Full Text] [Related]
2. Examination of the role of tyrosine-174 in the catalytic mechanism of the Arabidopsis thaliana chitinase: comparison of variant chitinases generated by site-directed mutagenesis and expressed in insect cells using baculovirus vectors. Verburg JG; Rangwala SH; Samac DA; Luckow VA; Huynh QK Arch Biochem Biophys; 1993 Jan; 300(1):223-30. PubMed ID: 8424656 [TBL] [Abstract][Full Text] [Related]
3. Identification of the aspartic acid residue located at or near substrate-binding site of rye seed chitinase-c. Yamagami T; Funatsu G Biosci Biotechnol Biochem; 1998 Feb; 62(2):383-5. PubMed ID: 9532801 [TBL] [Abstract][Full Text] [Related]
4. Purification and characterization of Bombyx mori chitinases. Koga D; Sasaki Y; Uchiumi Y; Hirai N; Arakane Y; Nagamatsu Y Insect Biochem Mol Biol; 1997; 27(8-9):757-67. PubMed ID: 9443376 [TBL] [Abstract][Full Text] [Related]
5. Chemical modification studies of the active centre of Candida albicans chitinase and its inhibition by allosamidin. Milewski S; O'Donnell RW; Gooday GW J Gen Microbiol; 1992 Dec; 138(12):2545-50. PubMed ID: 1362581 [TBL] [Abstract][Full Text] [Related]
6. Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. Huynh QK; Hironaka CM; Levine EB; Smith CE; Borgmeyer JR; Shah DM J Biol Chem; 1992 Apr; 267(10):6635-40. PubMed ID: 1551872 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of a rice gene encoding a basic chitinase. Zhu Q; Lamb CJ Mol Gen Genet; 1991 Apr; 226(1-2):289-96. PubMed ID: 2034221 [TBL] [Abstract][Full Text] [Related]
8. Chemical modification of Penicillium 1,2-alpha-D-mannosidase by water-soluble carbodi-imide: identification of a catalytically important aspartic acid residue. Yoshida T; Maeda K; Kobayashi M; Ichishima E Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):97-103. PubMed ID: 7945271 [TBL] [Abstract][Full Text] [Related]
9. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. Watanabe T; Kobori K; Miyashita K; Fujii T; Sakai H; Uchida M; Tanaka H J Biol Chem; 1993 Sep; 268(25):18567-72. PubMed ID: 8103047 [TBL] [Abstract][Full Text] [Related]
10. Specific carbodiimide-binding mechanism for the selective modification of the aspartic acid-101 residue of lysozyme in the carbodiimide-amine reaction. Kuroki R; Yamada H; Imoto T J Biochem; 1986 May; 99(5):1493-9. PubMed ID: 3711072 [TBL] [Abstract][Full Text] [Related]
11. The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 A resolution. Hart PJ; Pfluger HD; Monzingo AF; Hollis T; Robertus JD J Mol Biol; 1995 Apr; 248(2):402-13. PubMed ID: 7739049 [TBL] [Abstract][Full Text] [Related]
12. Enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis. Bokma E; Barends T; Terwissch van Scheltingab AC; Dijkstr BW; Beintema JJ FEBS Lett; 2000 Jul; 478(1-2):119-22. PubMed ID: 10922481 [TBL] [Abstract][Full Text] [Related]
13. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize. Wu S; Kriz AL; Widholm JM Plant Physiol; 1994 Aug; 105(4):1097-105. PubMed ID: 7972490 [TBL] [Abstract][Full Text] [Related]
14. Differential labeling of the catalytic subunit of cAMP-dependent protein kinase with a water-soluble carbodiimide: identification of carboxyl groups protected by MgATP and inhibitor peptides. Buechler JA; Taylor SS Biochemistry; 1990 Feb; 29(7):1937-43. PubMed ID: 2331473 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of a novel tobacco pathogenesis-related (PR) protein: a new plant chitinase/lysozyme. Heitz T; Segond S; Kauffmann S; Geoffroy P; Prasad V; Brunner F; Fritig B; Legrand M Mol Gen Genet; 1994 Oct; 245(2):246-54. PubMed ID: 7816033 [TBL] [Abstract][Full Text] [Related]
16. An active-site peptide containing the second essential carboxyl group of dextransucrase from Leuconostoc mesenteroides by chemical modifications. Funane K; Shiraiwa M; Hashimoto K; Ichishima E; Kobayashi M Biochemistry; 1993 Dec; 32(49):13696-702. PubMed ID: 8257704 [TBL] [Abstract][Full Text] [Related]
17. The presence of essential carboxyl group for binding of cytochrome c in rat hepatic NADPH-cytochrome P-450 reductase by the reaction with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. Inano H; Tamaoki B J Enzyme Inhib; 1985; 1(1):47-59. PubMed ID: 2854844 [TBL] [Abstract][Full Text] [Related]
18. Primary structure and expression of mRNAs encoding basic chitinase and 1,3-beta-glucanase in potato. Beerhues L; Kombrink E Plant Mol Biol; 1994 Jan; 24(2):353-67. PubMed ID: 8111037 [TBL] [Abstract][Full Text] [Related]
19. Oat (Avena sativa) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase. Sørensen HP; Madsen LS; Petersen J; Andersen JT; Hansen AM; Beck HC Appl Biochem Biotechnol; 2010 Mar; 160(6):1573-84. PubMed ID: 19224400 [TBL] [Abstract][Full Text] [Related]
20. Crosslinking of cytochrome c and cytochrome b5 with a water-soluble carbodiimide. Reaction conditions, product analysis and critique of the technique. Mauk MR; Mauk AG Eur J Biochem; 1989 Dec; 186(3):473-86. PubMed ID: 2558010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]