BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17404458)

  • 1. In vivo study of an x-ray fluorescence system to detect bone strontium non-invasively.
    Zamburlini M; Pejović-Milić A; Chettle DR; Webber CE; Gyorffy J
    Phys Med Biol; 2007 Apr; 52(8):2107-22. PubMed ID: 17404458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent normalization of finger strontium XRF measurements: feasibility and limitations.
    Zamburlini M; Pejović-Milić A; Chettle DR
    Phys Med Biol; 2008 Aug; 53(15):N307-13. PubMed ID: 18635898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex vivo evaluation of a coherent normalization procedure to quantify in vivo finger strontium XRS measurements.
    Heirwegh CM; Chettle DR; Pejovicc-Milicc A
    Med Phys; 2012 Feb; 39(2):832-41. PubMed ID: 22320793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring bone strontium intake in osteoporotic females self-supplementing with strontium citrate with a novel in-vivo X-ray fluorescence based diagnostic tool.
    Moise H; Chettle DR; Pejović-Milić A
    Bone; 2014 Apr; 61():48-54. PubMed ID: 24434614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).
    Specht AJ; Mostafaei F; Lin Y; Xu J; Nie LH
    Appl Spectrosc; 2017 Aug; 71(8):1962-1968. PubMed ID: 28756702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring bone strontium levels of an osteoporotic subject due to self-administration of strontium citrate with a novel diagnostic tool, in vivo XRF: a case study.
    Moise H; Adachi JD; Chettle DR; Pejović-Milić A
    Bone; 2012 Jul; 51(1):93-7. PubMed ID: 22549020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulations of in vivo K-shell X-ray fluorescence bone lead measurement and implications for radiation dosimetry.
    Ahmed N; Fleming DE; O'Meara JM
    Appl Radiat Isot; 2006 Sep; 64(9):1036-42. PubMed ID: 16766194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Non-invasive determination of bone lead in human body using X-ray fluorescence excited by 109Cd].
    Huang SB; Tian L; Cheng HS; Pei P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1470-2. PubMed ID: 15762508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo (MC) based individual calibration method for in vivo x-ray fluorescence analysis (XRF).
    Hansson M; Isaksson M
    Phys Med Biol; 2007 Apr; 52(7):2009-19. PubMed ID: 17374924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of advanced x-ray imaging crystal spectrometer utilizing a large area segmented proportional counter for KSTAR.
    Lee SG; Bak JG; Nam UW; Moon MK; Cheon JK
    Rev Sci Instrum; 2007 Jun; 78(6):063504. PubMed ID: 17614609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope.
    Hoshino M; Ishino T; Namiki T; Yamada N; Watanabe N; Aoki S
    Rev Sci Instrum; 2007 Jul; 78(7):073706. PubMed ID: 17672765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence.
    O'Meara JM; Fleming DE
    Phys Med Biol; 2009 Apr; 54(8):2449-61. PubMed ID: 19336842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of bone strontium levels in humans by in vivo x-ray fluorescence.
    Pejović-Milić A; Stronach IM; Gyorffy J; Webber CE; Chettle DR
    Med Phys; 2004 Mar; 31(3):528-38. PubMed ID: 15070251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and performance of a curved-crystal x-ray emission spectrometer.
    Hudson AC; Stolte WC; Lindle DW; Guillemin R
    Rev Sci Instrum; 2007 May; 78(5):053101. PubMed ID: 17552806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of bone-density on in vivo K x-ray fluorescence bone-lead measurements.
    Lodwick CJ; Lodwick JC; Spitz HB
    Health Phys; 2011 May; 100(5):502-7. PubMed ID: 21451320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of imaging technologies to correct for photon attenuation in the overlying tissue for in vivo bone strontium measurements.
    Heirwegh CM; Chettle DR; Pejović-Milić A
    Phys Med Biol; 2010 Feb; 55(4):1083-98. PubMed ID: 20107249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate.
    Wohl GR; Chettle DR; Pejović-Milić A; Druchok C; Webber CE; Adachi JD; Beattie KA
    Bone; 2013 Jan; 52(1):63-9. PubMed ID: 22995463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the intensity of X- and gamma-ray emissions in the decay of 153Sm.
    Lépy MC; Amiot MN; Bé MM; Cassette P
    Appl Radiat Isot; 2006; 64(10-11):1428-34. PubMed ID: 16580221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification to the Monte Carlo N-particle code for simulating direct, in vivo measurement of stable lead in bone.
    Lodwick CJ; Spitz HB
    Health Phys; 2008 Jun; 94(6):519-26. PubMed ID: 18469585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a prototype of an extrapolation minichamber in various radiation beams.
    Oliveira ML; Caldas LV
    Appl Radiat Isot; 2007 Aug; 65(8):975-9. PubMed ID: 17574854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.