These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 1740452)

  • 1. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. II. Frequency of primer synthesis and efficiency of primer utilization control Okazaki fragment size.
    Zechner EL; Wu CA; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4045-53. PubMed ID: 1740452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size.
    Wu CA; Zechner EL; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4030-44. PubMed ID: 1740451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis.
    Wu CA; Zechner EL; Reems JA; McHenry CS; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4074-83. PubMed ID: 1740453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size.
    Zechner EL; Wu CA; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4054-63. PubMed ID: 1531480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme.
    Wu CA; Zechner EL; Hughes AJ; Franden MA; McHenry CS; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4064-73. PubMed ID: 1346785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA primer-primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication.
    Spiering MM; Hanoian P; Gannavaram S; Benkovic SJ
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5635-5640. PubMed ID: 28507156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the bacteriophage T4 gene 41 and gene 32 proteins on RNA primer synthesis: coupling of leading- and lagging-strand DNA synthesis at a replication fork.
    Cha TA; Alberts BM
    Biochemistry; 1990 Feb; 29(7):1791-8. PubMed ID: 2158814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primer release is the rate-limiting event in lagging-strand synthesis mediated by the T7 replisome.
    Hernandez AJ; Lee SJ; Richardson CC
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5916-21. PubMed ID: 27162371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro.
    Higuchi K; Katayama T; Iwai S; Hidaka M; Horiuchi T; Maki H
    Genes Cells; 2003 May; 8(5):437-49. PubMed ID: 12694533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The E. coli DNA Replication Fork.
    Lewis JS; Jergic S; Dixon NE
    Enzymes; 2016; 39():31-88. PubMed ID: 27241927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primase couples leading- and lagging-strand DNA synthesis from oriC.
    Hiasa H; Marians KJ
    J Biol Chem; 1994 Feb; 269(8):6058-63. PubMed ID: 8119951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21406-12. PubMed ID: 8702922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction between helicase and primase sets the replication fork clock.
    Tougu K; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21398-405. PubMed ID: 8702921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork.
    Yuan Q; McHenry CS
    Nucleic Acids Res; 2014 Feb; 42(3):1747-56. PubMed ID: 24234450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct triggers for cycling of the lagging strand polymerase at the replication fork.
    Li X; Marians KJ
    J Biol Chem; 2000 Nov; 275(44):34757-65. PubMed ID: 10948202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of primer RNA synthesis and D-loop/R-loop-dependent DNA replication in Escherichia coli.
    Masai H; Arai K
    Biochimie; 1996; 78(11-12):1109-17. PubMed ID: 9150892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The replication of DNA containing the simian virus 40 origin by the monopolymerase and dipolymerase systems.
    Eki T; Matsumoto T; Murakami Y; Hurwitz J
    J Biol Chem; 1992 Apr; 267(11):7284-94. PubMed ID: 1348504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bacteriophage T4 DNA replication fork. Only DNA helicase is required for leading strand DNA synthesis by the DNA polymerase holoenzyme.
    Cha TA; Alberts BM
    J Biol Chem; 1989 Jul; 264(21):12220-5. PubMed ID: 2545703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks.
    Yuan Q; Dohrmann PR; Sutton MD; McHenry CS
    J Biol Chem; 2016 May; 291(22):11727-35. PubMed ID: 27056333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7.
    Zhang H; Tang Y; Lee SJ; Wei Z; Cao J; Richardson CC
    J Biol Chem; 2016 Jan; 291(3):1472-80. PubMed ID: 26620561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.