These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17404638)

  • 1. Parameters affecting the chemical work output of a hybrid photoelectrochemical biofuel cell.
    Hambourger M; Liddell PA; Gust D; Moore AL; Moore TA
    Photochem Photobiol Sci; 2007 Apr; 6(4):431-7. PubMed ID: 17404638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell.
    Brune A; Jeong G; Liddell PA; Sotomura T; Moore TA; Moore AL; Gust D
    Langmuir; 2004 Sep; 20(19):8366-71. PubMed ID: 15350115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar energy conversion in a photoelectrochemical biofuel cell.
    Hambourger M; Kodis G; Vaughn MD; Moore GF; Gust D; Moore AL; Moore TA
    Dalton Trans; 2009 Dec; (45):9979-89. PubMed ID: 19904423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell.
    Hambourger M; Gervaldo M; Svedruzic D; King PW; Gust D; Ghirardi M; Moore AL; Moore TA
    J Am Chem Soc; 2008 Feb; 130(6):2015-22. PubMed ID: 18205358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient dye-sensitized solar cells based on hydroquinone/benzoquinone as a bioinspired redox couple.
    Cheng M; Yang X; Zhang F; Zhao J; Sun L
    Angew Chem Int Ed Engl; 2012 Sep; 51(39):9896-9. PubMed ID: 22952034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-assisted reforming of glucose to hydrogen in a photoelectrochemical cell.
    Hambourger M; Brune A; Gust D; Moore AL; Moore TA
    Photochem Photobiol; 2005; 81(4):1015-20. PubMed ID: 15960593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dye-sensitized solar cells based on hydroquinone/benzoquinone as bio-inspired redox couple with different counter electrodes.
    Cheng M; Yang X; Chen C; Zhao J; Zhang F; Sun L
    Phys Chem Chem Phys; 2013 Sep; 15(36):15146-52. PubMed ID: 23925069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation.
    Wang GL; Xu JJ; Chen HY
    Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1-(3'-Amino)propylsilatrane derivatives as covalent surface linkers to nanoparticulate metal oxide films for use in photoelectrochemical cells.
    Brennan BJ; Keirstead AE; Liddell PA; Vail SA; Moore TA; Moore AL; Gust D
    Nanotechnology; 2009 Dec; 20(50):505203. PubMed ID: 19923652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectrochemical biofuel cell using porphyrin-sensitized nanocrystalline titanium dioxide mesoporous film as photoanode.
    Wang K; Yang J; Feng L; Zhang Y; Liang L; Xing W; Liu C
    Biosens Bioelectron; 2012 Feb; 32(1):177-82. PubMed ID: 22221794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes.
    Yang J; Chen C; Ji H; Ma W; Zhao J
    J Phys Chem B; 2005 Nov; 109(46):21900-7. PubMed ID: 16853845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron injection at dye-sensitized semiconductor electrodes.
    Watson DF; Meyer GJ
    Annu Rev Phys Chem; 2005; 56():119-56. PubMed ID: 15796698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance.
    Imahori H; Kang S; Hayashi H; Haruta M; Kurata H; Isoda S; Canton SE; Infahsaeng Y; Kathiravan A; Pascher T; Chábera P; Yartsev AP; Sundström V
    J Phys Chem A; 2011 Apr; 115(16):3679-90. PubMed ID: 20961148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO₂ nanoparticles.
    Tu W; Dong Y; Lei J; Ju H
    Anal Chem; 2010 Oct; 82(20):8711-6. PubMed ID: 20857916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode.
    Ding H; Li Y; Lu A; Jin S; Quan C; Wang C; Wang X; Zeng C; Yan Y
    Bioresour Technol; 2010 May; 101(10):3500-5. PubMed ID: 20093012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions.
    Kongkanand A; Kamat PV
    ACS Nano; 2007 Aug; 1(1):13-21. PubMed ID: 19203126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient charge injection from the S2 photoexcited state of special-pair mimic porphyrin assemblies anchored on a titanium-modified ITO anode.
    Morisue M; Haruta N; Kalita D; Kobuke Y
    Chemistry; 2006 Oct; 12(31):8123-35. PubMed ID: 16977669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel platform to study the photoinduced electron transfer at a dye-sensitized solid/liquid interface.
    Lu X; Hu Y; Wang W; Du J; He H; Ai R; Liu X
    Colloids Surf B Biointerfaces; 2013 Mar; 103():608-14. PubMed ID: 23261587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.