BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17404727)

  • 1. Stable and continuous long-term enzymatic reaction using an enzyme-nanofiber composite.
    Lee JH; Hwang ET; Kim BC; Lee SM; Sang BI; Choi YS; Kim J; Gu MB
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1301-7. PubMed ID: 17404727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study.
    Wang ZG; Ke BB; Xu ZK
    Biotechnol Bioeng; 2007 Jul; 97(4):708-20. PubMed ID: 17171660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases.
    Lee JH; Kim SB; Park C; Tae B; Han SO; Kim SW
    Appl Biochem Biotechnol; 2010 May; 161(1-8):365-71. PubMed ID: 19898962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure.
    Nair S; Kim J; Crawford B; Kim SH
    Biomacromolecules; 2007 Apr; 8(4):1266-70. PubMed ID: 17305393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the yield of physiologically active oligosaccharides in continuous hydrolysis of chitosan using immobilized chitosanases.
    Kuroiwa T; Ichikawa S; Sato S; Mukataka S
    Biotechnol Bioeng; 2003 Oct; 84(1):121-7. PubMed ID: 12910551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the process for biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases.
    Lee JH; Lee DH; Lim JS; Um BH; Park C; Kang SW; Kim SW
    J Microbiol Biotechnol; 2008 Dec; 18(12):1927-31. PubMed ID: 19131695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch production of deacetyl 7-aminocephalosporanic acid by immobilized cephalosporin-C deacetylase.
    Takimoto A; Takakura T; Tani H; Yagi S; Mitsushima K
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):263-7. PubMed ID: 15069587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of flatus-inducing factors in soymilk by immobilized alpha-galactosidase.
    Kulkarni DS; Kapanoor SS; Girigouda K; Kote NV; Mulimani VH
    Biotechnol Appl Biochem; 2006 Sep; 45(Pt 2):51-7. PubMed ID: 16780418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde.
    Dizge N; Keskinler B; Tanriseven A
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):34-8. PubMed ID: 18571389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconjugation of alkaline phosphatase to mechanically processed, aqueous suspendible electrospun polymer nanofibers for use in chemiluminescent detection assays.
    Mark SS; Stolper SI; Baratti C; Park JY; Taku MA; Santiago-Avilés JJ; Kricka LJ
    Macromol Biosci; 2008 Jun; 8(6):484-98. PubMed ID: 18484567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactose hydrolysis by beta-galactosidase covalently immobilized to thermally stable biopolymers.
    Elnashar MM; Yassin MA
    Appl Biochem Biotechnol; 2009 Nov; 159(2):426-37. PubMed ID: 19082762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes.
    Thomsen MS; Nidetzky B
    Biotechnol J; 2009 Jan; 4(1):98-107. PubMed ID: 18618472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C.
    Tan SS; Li DY; Jiang ZQ; Zhu YP; Shi B; Li LT
    Bioresour Technol; 2008 Jan; 99(1):200-4. PubMed ID: 17258452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies.
    Karra-Châabouni M; Bouaziz I; Boufi S; Botelho do Rego AM; Gargouri Y
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):168-77. PubMed ID: 18684596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme immobilization by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperatures.
    Kaetsu I; Kumakura M; Yoshida M
    Biotechnol Bioeng; 1979 May; 21(5):847-61. PubMed ID: 107982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of thermostability and ester synthesis ability of free and immobilized lipases on cross linked silica gel.
    Kumari A; Mahapatra P; Kumar GV; Banerjee R
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):291-8. PubMed ID: 17882456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of lipase pretreatment prior to lipase immobilization to prevent loss of activity.
    Lee DH; Kim JM; Shin HY; Kim SW
    J Microbiol Biotechnol; 2007 Apr; 17(4):650-4. PubMed ID: 18051278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of enzymatic gas-phase reactions by increasing the long-term stability of the catalyst.
    Ferloni C; Heinemann M; Hummel W; Daussmann T; Büchs J
    Biotechnol Prog; 2004; 20(3):975-8. PubMed ID: 15176907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design.
    Santos AM; Oliveira MG; Maugeri F
    Bioresour Technol; 2007 Nov; 98(16):3142-8. PubMed ID: 17254780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrapment of beta-galactosidase in polyvinylalcohol hydrogel.
    Grosová Z; Rosenberg M; Rebros M; Sipocz M; Sedlácková B
    Biotechnol Lett; 2008 Apr; 30(4):763-7. PubMed ID: 18043870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.