BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17405180)

  • 1. Characterization of antimicrobial histone sequences and posttranslational modifications by mass spectrometry.
    Ouvry-Patat SA; Schey KL
    J Mass Spectrom; 2007 May; 42(5):664-74. PubMed ID: 17405180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-translational modifications of Trypanosoma cruzi histone H4.
    da Cunha JP; Nakayasu ES; de Almeida IC; Schenkman S
    Mol Biochem Parasitol; 2006 Dec; 150(2):268-77. PubMed ID: 17010453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometric analysis of histone posttranslational modifications.
    Burlingame AL; Zhang X; Chalkley RJ
    Methods; 2005 Aug; 36(4):383-94. PubMed ID: 16112065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum.
    Trelle MB; Salcedo-Amaya AM; Cohen AM; Stunnenberg HG; Jensen ON
    J Proteome Res; 2009 Jul; 8(7):3439-50. PubMed ID: 19351122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epsilon -N,N,N-trimethyllysine-specific ions in matrix-assisted laser desorption/ionization-tandem mass spectrometry.
    Hirota J; Satomi Y; Yoshikawa K; Takao T
    Rapid Commun Mass Spectrom; 2003; 17(5):371-6. PubMed ID: 12590383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial activity of histones from hemocytes of the Pacific white shrimp.
    Patat SA; Carnegie RB; Kingsbury C; Gross PS; Chapman R; Schey KL
    Eur J Biochem; 2004 Dec; 271(23-24):4825-33. PubMed ID: 15606770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of post-translational modifications of histone H2B-variants isolated from Arabidopsis thaliana.
    Bergmüller E; Gehrig PM; Gruissem W
    J Proteome Res; 2007 Sep; 6(9):3655-68. PubMed ID: 17691833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different separation technologies for proteome analyses: isoform resolution as a prerequisite for the definition of protein biomarkers on the level of posttranslational modifications.
    Hunzinger C; Schrattenholz A; Poznanović S; Schwall GP; Stegmann W
    J Chromatogr A; 2006 Aug; 1123(2):170-81. PubMed ID: 16822517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid sequence determination of protein biomarkers of Campylobacter upsaliensis and C. helveticus by "composite" sequence proteomic analysis.
    Fagerquist CK
    J Proteome Res; 2007 Jul; 6(7):2539-49. PubMed ID: 17508732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo posttranslational modifications of the high mobility group A1a proteins in breast cancer cells of differing metastatic potential.
    Edberg DD; Bruce JE; Siems WF; Reeves R
    Biochemistry; 2004 Sep; 43(36):11500-15. PubMed ID: 15350136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of histones and their post-translational modifications by mass spectrometry.
    Garcia BA; Shabanowitz J; Hunt DF
    Curr Opin Chem Biol; 2007 Feb; 11(1):66-73. PubMed ID: 17157550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: an application for determining lysine 9 acetylation and methylation of histone H3.
    Zhang K; Yau PM; Chandrasekhar B; New R; Kondrat R; Imai BS; Bradbury ME
    Proteomics; 2004 Jan; 4(1):1-10. PubMed ID: 14730666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a covalently cross-linked form of core histones present in the starfish sperm.
    Shimizu T; Takao T; Hozumi K; Nunomura K; Ohta S; Shimonishi Y; Ikegami S
    Biochemistry; 1997 Oct; 36(40):12071-9. PubMed ID: 9315845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry.
    Garcia BA; Busby SA; Barber CM; Shabanowitz J; Allis CD; Hunt DF
    J Proteome Res; 2004; 3(6):1219-27. PubMed ID: 15595731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moving marks: dynamic histone modifications in yeast.
    Krebs JE
    Mol Biosyst; 2007 Sep; 3(9):590-7. PubMed ID: 17700858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of antimicrobial proteins and peptide from chicken liver.
    Li GH; Mine Y; Hincke MT; Nys Y
    J Pept Sci; 2007 Jun; 13(6):368-78. PubMed ID: 17431854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posttranslational modifications in lens fiber connexins identified by off-line-HPLC MALDI-quadrupole time-of-flight mass spectrometry.
    Shearer D; Ens W; Standing K; Valdimarsson G
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1553-62. PubMed ID: 18385075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem time-of-flight (TOF/TOF) mass spectrometry and the curved-field reflectron.
    Cotter RJ; Griffith W; Jelinek C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Aug; 855(1):2-13. PubMed ID: 17258517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational modification of p53 protein in response to ionizing radiation analyzed by mass spectrometry.
    Abraham J; Kelly J; Thibault P; Benchimol S
    J Mol Biol; 2000 Jan; 295(4):853-64. PubMed ID: 10656795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone variant macroH2A1.2 is mono-ubiquitinated at its histone domain.
    Ogawa Y; Ono T; Wakata Y; Okawa K; Tagami H; Shibahara KI
    Biochem Biophys Res Commun; 2005 Oct; 336(1):204-9. PubMed ID: 16129414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.