These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17405366)

  • 1. Algebraic multigrid preconditioner for the cardiac bidomain model.
    Plank G; Liebmann M; Weber dos Santos R; Vigmond EJ; Haase G
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):585-96. PubMed ID: 17405366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel multigrid preconditioner for the cardiac bidomain model.
    Weber dos Santos R; Plank G; Bauer S; Vigmond EJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1960-8. PubMed ID: 15536898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solving the cardiac bidomain equations for discontinuous conductivities.
    Austin TM; Trew ML; Pullan AJ
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1265-72. PubMed ID: 16830931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced-order preconditioning for bidomain simulations.
    Deo M; Bauer S; Plank G; Vigmond E
    IEEE Trans Biomed Eng; 2007 May; 54(5):938-42. PubMed ID: 17518292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating large cardiac bidomain simulations by arnoldi preconditioning.
    Deo M; Bauer S; Plank G; Vigmond E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3923-6. PubMed ID: 17946209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart.
    Sundnes J; Lines GT; Mardal KA; Tveito A
    Comput Methods Biomech Biomed Engin; 2002 Dec; 5(6):397-409. PubMed ID: 12468421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arnoldi preconditioning for solving large linear biomedical systems.
    Deo M; Vigmond E
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():2914-7. PubMed ID: 17282853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A macro finite-element formulation for cardiac electrophysiology simulations using hybrid unstructured grids.
    Rocha BM; Kickinger F; Prassl AJ; Haase G; Vigmond EJ; dos Santos RW; Zaglmayr S; Plank G
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1055-65. PubMed ID: 20699206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport.
    Detwiler RL; Mehl S; Rajaram H; Cheung WW
    Ground Water; 2002; 40(3):267-72. PubMed ID: 12019641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of multilevel solvers for the cardiac bidomain equations.
    Austin T; Trew M; Pullan A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7204-7. PubMed ID: 17281940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation.
    Augustin CM; Neic A; Liebmann M; Prassl AJ; Niederer SA; Haase G; Plank G
    J Comput Phys; 2016 Jan; 305():622-646. PubMed ID: 26819483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.
    Campos JO; Dos Santos RW; Sundnes J; Rocha BM
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2948. PubMed ID: 29181888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Solving Groundwater Flow and Transport Models with Algebraic Multigrid Preconditioning.
    Sbai MA; Larabi A
    Ground Water; 2021 Jan; 59(1):100-108. PubMed ID: 32436223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving the coupled system improves computational efficiency of the bidomain equations.
    Southern JA; Plank G; Vigmond EJ; Whiteley JP
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2404-12. PubMed ID: 19457741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function.
    Skouibine K; Krassowska W
    Ann Biomed Eng; 2000 Jul; 28(7):772-80. PubMed ID: 11016414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second-level diagonal preconditioner for single-step SNPBLUP.
    Vandenplas J; Calus MPL; Eding H; Vuik C
    Genet Sel Evol; 2019 Jun; 51(1):30. PubMed ID: 31238880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.