These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17405376)

  • 1. Myoelectric signal classification for phoneme-based speech recognition.
    Scheme EJ; Hudgins B; Parker PA
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):694-9. PubMed ID: 17405376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved phoneme-based myoelectric speech recognition.
    Zhou Q; Jiang N; Englehart K; Hudgins B
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2016-23. PubMed ID: 19535319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SNR-adaptive stream weighting for audio-MES ASR.
    Lee KS
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2001-10. PubMed ID: 18632363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-based speech recognition using hidden markov models with global control variables.
    Lee KS
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):930-40. PubMed ID: 18334384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control.
    Hargrove LJ; Li G; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2009 May; 56(5):1407-14. PubMed ID: 19473932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approximated mutual information training for speech recognition using myoelectric signals.
    Guo HJ; Chan A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():767-70. PubMed ID: 17945600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hidden Markov model classification of myoelectric signals in speech.
    Chan AD; Englehart K; Hudgins B; Lovely DF
    IEEE Eng Med Biol Mag; 2002; 21(5):143-6. PubMed ID: 12405068
    [No Abstract]   [Full Text] [Related]  

  • 9. Syllable-based speech recognition using EMG.
    Lopez-Larraz E; Mozos OM; Antelis JM; Minguez J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4699-702. PubMed ID: 21096011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of acoustic feature parameters using myoelectric signals.
    Lee KS
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1587-95. PubMed ID: 20172775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic speech recognition using a predictive echo state network classifier.
    Skowronski MD; Harris JG
    Neural Netw; 2007 Apr; 20(3):414-23. PubMed ID: 17556115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.
    Polur PD; Miller GE
    Med Eng Phys; 2006 Oct; 28(8):741-8. PubMed ID: 16359906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous myoelectric control for powered prostheses using hidden Markov models.
    Chan AD; Englehart KB
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):121-4. PubMed ID: 15651571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A research in speech endpoint detection based on boxes-coupling generalization dimension].
    Wang Z; Yang C; Wu W; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):536-41. PubMed ID: 18693426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unspoken vowel recognition using facial electromyogram.
    Arjunan SP; Kumar DK; Yau WC; Weghorn H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2191-4. PubMed ID: 17945699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telephony-based voice pathology assessment using automated speech analysis.
    Moran RJ; Reilly RB; de Chazal P; Lacy PD
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):468-77. PubMed ID: 16532773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2008 Dec; 29(6):838-52. PubMed ID: 18633325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistream articulatory feature-based models for visual speech recognition.
    Saenko K; Livescu K; Glass J; Darrell T
    IEEE Trans Pattern Anal Mach Intell; 2009 Sep; 31(9):1700-7. PubMed ID: 19574628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hands-free human computer interaction via an electromyogram-based classification algorithm.
    Chin C; Barreto A; Li C; Zhai J
    Biomed Sci Instrum; 2005; 41():31-6. PubMed ID: 15850078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.