These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17405804)

  • 1. Biomechanics of submaximal recumbent cycling in adolescents with and without cerebral palsy.
    Johnston TE; Barr AE; Lee SC
    Phys Ther; 2007 May; 87(5):572-85. PubMed ID: 17405804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of recumbent cycling in adolescents with cerebral palsy with and without the use of a fixed shank guide.
    Johnston TE; Barr AE; Lee SC
    Gait Posture; 2008 May; 27(4):539-46. PubMed ID: 17689963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in pedal forces during recumbent cycling in adolescents with and without cerebral palsy.
    Johnston TE; Prosser LA; Lee SC
    Clin Biomech (Bristol, Avon); 2008 Feb; 23(2):248-51. PubMed ID: 17950505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method of analysing the performance of self-paced and engine induced cycling in children with cerebral palsy.
    Bar-Haim S; Harries N; Copeliovitch L; Ager G; Dobrov I; Kaplanski J
    Disabil Rehabil; 2007 Aug; 29(16):1261-9. PubMed ID: 17654001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of reflex activity and co-contraction during assessments of spasticity of the knee flexor and knee extensor muscles in children with cerebral palsy and different functional levels.
    Pierce SR; Barbe MF; Barr AE; Shewokis PA; Lauer RT
    Phys Ther; 2008 Oct; 88(10):1124-34. PubMed ID: 18703677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Squat test performance and execution in children with and without cerebral palsy.
    Eken MM; Harlaar J; Dallmeijer AJ; de Waard E; van Bennekom CA; Houdijk H
    Clin Biomech (Bristol, Avon); 2017 Jan; 41():98-105. PubMed ID: 28040656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of a shank guide on cycling biomechanics of an adolescent with cerebral palsy: a single-case study.
    Johnston TE; Lauer RT; Lee SC
    Arch Phys Med Rehabil; 2008 Oct; 89(10):2025-30. PubMed ID: 18929033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coactivation During Dynamometry Testing in Adolescents With Spastic Cerebral Palsy.
    Eken MM; Dallmeijer AJ; Doorenbosch CA; Dekkers H; Becher JG; Houdijk H
    Phys Ther; 2016 Sep; 96(9):1438-47. PubMed ID: 26916928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of muscle endurance of the knee extensor muscles in adolescents with spastic cerebral palsy using a submaximal repetitions-to-fatigue protocol.
    Eken MM; Dallmeijer AJ; Doorenbosch CA; Dekkers H; Becher JG; Houdijk H
    Arch Phys Med Rehabil; 2014 Oct; 95(10):1888-94. PubMed ID: 25183298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower extremity muscle activity during cycling in adolescents with and without cerebral palsy.
    Lauer RT; Johnston TE; Smith BT; Lee SC
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):442-9. PubMed ID: 18082920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial.
    Fowler EG; Knutson LM; Demuth SK; Siebert KL; Simms VD; Sugi MH; Souza RB; Karim R; Azen SP;
    Phys Ther; 2010 Mar; 90(3):367-81. PubMed ID: 20093327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximal aerobic and anaerobic exercise responses in children with cerebral palsy.
    Balemans AC; Van Wely L; De Heer SJ; Van den Brink J; De Koning JJ; Becher JG; Dallmeijer AJ
    Med Sci Sports Exerc; 2013 Mar; 45(3):561-8. PubMed ID: 23034639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor control of the lower extremity musculature in children with cerebral palsy.
    Arpin DJ; Stuberg W; Stergiou N; Kurz MJ
    Res Dev Disabil; 2013 Apr; 34(4):1134-43. PubMed ID: 23376048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cycling patterns in children with and without cerebral palsy.
    Kaplan SL
    Dev Med Child Neurol; 1995 Jul; 37(7):620-30. PubMed ID: 7615148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle fatigue during repetitive voluntary contractions: a comparison between children with cerebral palsy, typically developing children and young healthy adults.
    Eken MM; Dallmeijer AJ; Houdijk H; Doorenbosch CA
    Gait Posture; 2013 Sep; 38(4):962-7. PubMed ID: 23810336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG normalization to study muscle activation in cycling.
    Rouffet DM; Hautier CA
    J Electromyogr Kinesiol; 2008 Oct; 18(5):866-78. PubMed ID: 17507240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle activation and energy-requirements for varying postures in children and adolescents with cerebral palsy.
    Verschuren O; Peterson MD; Leferink S; Darrah J
    J Pediatr; 2014 Nov; 165(5):1011-6. PubMed ID: 25151195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of recumbent cycling as a training modality for the functional movements; sit-to-stand and step-up.
    Kerr A; Rafferty D; Moffat F; Morlan G
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1104-11. PubMed ID: 17854957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-activity during maximum voluntary contraction: a study of four lower-extremity muscles in children with and without cerebral palsy.
    Tedroff K; Knutson LM; Soderberg GL
    Dev Med Child Neurol; 2008 May; 50(5):377-81. PubMed ID: 18371092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.