These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17405817)

  • 1. Functional importance of polymerization and localization of calsequestrin in C. elegans.
    Cho JH; Ko KM; Singaruvelu G; Lee W; Kang GB; Rho SH; Park BJ; Yu JR; Kagawa H; Eom SH; Kim DH; Ahnn J
    J Cell Sci; 2007 May; 120(Pt 9):1551-8. PubMed ID: 17405817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calsequestrin, a calcium sequestering protein localized at the sarcoplasmic reticulum, is not essential for body-wall muscle function in Caenorhabditis elegans.
    Cho JH; Oh YS; Park KW; Yu J; Choi KY; Shin JY; Kim DH; Park WJ; Hamada T; Kagawa H; Maryon EB; Bandyopadhyay J; Ahnn J
    J Cell Sci; 2000 Nov; 113 ( Pt 22)():3947-58. PubMed ID: 11058082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calsequestrin mediates changes in spontaneous calcium release profiles.
    Tania N; Keener JP
    J Theor Biol; 2010 Aug; 265(3):359-76. PubMed ID: 20648970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrograde activation of store-operated calcium channel.
    Ma J; Pan Z
    Cell Calcium; 2003; 33(5-6):375-84. PubMed ID: 12765683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dissection, tissue localization and Ca2+ binding of the ryanodine receptor of Caenorhabditis elegans.
    Hamada T; Sakube Y; Ahnn J; Kim DH; Kagawa H
    J Mol Biol; 2002 Nov; 324(1):123-35. PubMed ID: 12421563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human CASQ2 mutation K206N is associated with hyperglycosylation and altered cellular calcium handling.
    Kirchhefer U; Wehrmeister D; Postma AV; Pohlentz G; Mormann M; Kucerova D; Müller FU; Schmitz W; Schulze-Bahr E; Wilde AA; Neumann J
    J Mol Cell Cardiol; 2010 Jul; 49(1):95-105. PubMed ID: 20302875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms.
    Qin J; Valle G; Nani A; Chen H; Ramos-Franco J; Nori A; Volpe P; Fill M
    Biophys J; 2009 Oct; 97(7):1961-70. PubMed ID: 19804727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin.
    Shin DW; Ma J; Kim DH
    FEBS Lett; 2000 Dec; 486(2):178-82. PubMed ID: 11113462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A calcium-induced calcium release mechanism mediated by calsequestrin.
    Lee YS; Keener JP
    J Theor Biol; 2008 Aug; 253(4):668-79. PubMed ID: 18538346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Head-to-tail oligomerization of calsequestrin: a novel mechanism for heterogeneous distribution of endoplasmic reticulum luminal proteins.
    Gatti G; Trifari S; Mesaeli N; Parker JM; Michalak M; Meldolesi J
    J Cell Biol; 2001 Aug; 154(3):525-34. PubMed ID: 11489915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel regulators of RyR Ca2+ release channels: insight into molecular changes in genetically-linked myopathies.
    Dulhunty AF; Beard NA; Pouliquin P; Kimura T
    J Muscle Res Cell Motil; 2006; 27(5-7):351-65. PubMed ID: 16909197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Egr-1 negatively regulates calsequestrin expression and calcium dynamics in ventricular cells.
    Kasneci A; Kemeny-Suss NM; Komarova SV; Chalifour LE
    Cardiovasc Res; 2009 Mar; 81(4):695-702. PubMed ID: 19103607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle.
    Shin DW; Pan Z; Kim EK; Lee JM; Bhat MB; Parness J; Kim DH; Ma J
    J Biol Chem; 2003 Jan; 278(5):3286-92. PubMed ID: 12419813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of calsequestrin over-expression on excitation-contraction coupling in isolated rabbit cardiomyocytes.
    Miller SL; Currie S; Loughrey CM; Kettlewell S; Seidler T; Reynolds DF; Hasenfuss G; Smith GL
    Cardiovasc Res; 2005 Sep; 67(4):667-77. PubMed ID: 15913577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different endoplasmic reticulum trafficking and processing pathways for calsequestrin (CSQ) and epitope-tagged CSQ.
    Houle TD; Ram ML; McMurray WJ; Cala SE
    Exp Cell Res; 2006 Dec; 312(20):4150-61. PubMed ID: 17045261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and structural characterization of a eurytolerant calsequestrin from the intertidal teleost Fundulus heteroclitus.
    Whittington AC; Nienow TE; Whittington CL; Fort TJ; Grove TJ
    PLoS One; 2012; 7(11):e50801. PubMed ID: 23226387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential localization and functional role of calsequestrin in growing and differentiated myoblasts.
    Raichman M; Panzeri MC; Clementi E; Papazafiri P; Eckley M; Clegg DO; Villa A; Meldolesi J
    J Cell Biol; 1995 Feb; 128(3):341-54. PubMed ID: 7844148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin.
    Ohkura M; Furukawa K; Fujimori H; Kuruma A; Kawano S; Hiraoka M; Kuniyasu A; Nakayama H; Ohizumi Y
    Biochemistry; 1998 Sep; 37(37):12987-93. PubMed ID: 9737879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.