These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17406096)

  • 21. Larval competition in Drosophila melanogaster. II. Comparing biological and competitive parameters.
    de Miranda JR; Eggleston P
    Heredity (Edinb); 1988 Apr; 60 ( Pt 2)():213-9. PubMed ID: 3130340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlated changes in circadian clocks in response to selection for faster pre-adult development in fruit flies Drosophila melanogaster.
    Yadav P; Sharma VK
    J Comp Physiol B; 2013 Apr; 183(3):333-43. PubMed ID: 23135746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of reduced pre-adult viability and larval growth rate in laboratory populations of Drosophila melanogaster selected for shorter development time.
    Prasad NG; Shakarad M; Gohil VM; Sheeba V; Rajamani M; Joshi A
    Genet Res; 2000 Dec; 76(3):249-59. PubMed ID: 11204972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae.
    Kunc M; Arefin B; Hyrsl P; Theopold U
    Fly (Austin); 2017 Jul; 11(3):208-217. PubMed ID: 28631995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clock mutations alter developmental timing in Drosophila.
    Kyriacou CP; Oldroyd M; Wood J; Sharp M; Hill M
    Heredity (Edinb); 1990 Jun; 64 ( Pt 3)():395-401. PubMed ID: 2113515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uracil-containing DNA in Drosophila: stability, stage-specific accumulation, and developmental involvement.
    Muha V; Horváth A; Békési A; Pukáncsik M; Hodoscsek B; Merényi G; Róna G; Batki J; Kiss I; Jankovics F; Vilmos P; Erdélyi M; Vértessy BG
    PLoS Genet; 2012; 8(6):e1002738. PubMed ID: 22685418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of pathogen-specific improved survivorship post-infection in populations of Drosophila melanogaster adapted to larval crowding.
    Kapila R; Kashyap M; Poddar S; Gangwal S; Prasad NGG
    PLoS One; 2021; 16(4):e0250055. PubMed ID: 33852596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New genes in Drosophila quickly become essential.
    Chen S; Zhang YE; Long M
    Science; 2010 Dec; 330(6011):1682-5. PubMed ID: 21164016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What is the promise of developmental evolution? Part II: A causal explanation of evolutionary innovations may be impossible.
    Wagner GP
    J Exp Zool; 2001 Dec; 291(4):305-9. PubMed ID: 11754010
    [No Abstract]   [Full Text] [Related]  

  • 30. GAL4 enhancer trap strains with reporter gene expression during the development of adult brain in Drosophila melanogaster.
    Venkatesh CR; Shyamala BV
    J Genet; 2010 Dec; 89(4):e38-42. PubMed ID: 21273707
    [No Abstract]   [Full Text] [Related]  

  • 31. Transcriptome Analysis of
    Christesen D; Yang YT; Somers J; Robin C; Sztal T; Batterham P; Perry T
    G3 (Bethesda); 2017 Feb; 7(2):467-479. PubMed ID: 27974438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dense and pleiotropic regulatory information in a developmental enhancer.
    Fuqua T; Jordan J; van Breugel ME; Halavatyi A; Tischer C; Polidoro P; Abe N; Tsai A; Mann RS; Stern DL; Crocker J
    Nature; 2020 Nov; 587(7833):235-239. PubMed ID: 33057197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of foraging behaviour in response to chronic malnutrition in Drosophila melanogaster.
    Vijendravarma RK; Narasimha S; Kawecki TJ
    Proc Biol Sci; 2012 Sep; 279(1742):3540-6. PubMed ID: 22696523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-content behavioral profiling reveals neuronal genetic network modulating Drosophila larval locomotor program.
    Aleman-Meza B; Loeza-Cabrera M; Peña-Ramos O; Stern M; Zhong W
    BMC Genet; 2017 May; 18(1):40. PubMed ID: 28499390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Life-history consequences of adaptation to larval nutritional stress in Drosophila.
    Kolss M; Vijendravarma RK; Schwaller G; Kawecki TJ
    Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of larval crowding on adult mating behaviour in Drosophila melanogaster.
    Ribó G; Ocaña J; Prevosti A
    Heredity (Edinb); 1989 Oct; 63 ( Pt 2)():195-202. PubMed ID: 2509403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential for evolutionary coupling and decoupling of larval and adult immune gene expression.
    Fellous S; Lazzaro BP
    Mol Ecol; 2011 Apr; 20(7):1558-67. PubMed ID: 21299661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional characterization of adaptive variation within a cis-regulatory element influencing Drosophila melanogaster growth.
    Glaser-Schmitt A; Parsch J
    PLoS Biol; 2018 Jan; 16(1):e2004538. PubMed ID: 29324742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells.
    Basak AK; Chatterjee T; Chakravarty A; Ghosh SK
    Environ Monit Assess; 2019 Jul; 191(8):497. PubMed ID: 31312907
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Dason JS; Cheung A; Anreiter I; Montemurri VA; Allen AM; Sokolowski MB
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23286-23291. PubMed ID: 31213548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.