These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes. Sunbul M; Zhang K; Yin J Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Quadri LE; Weinreb PH; Lei M; Nakano MM; Zuber P; Walsh CT Biochemistry; 1998 Feb; 37(6):1585-95. PubMed ID: 9484229 [TBL] [Abstract][Full Text] [Related]
10. Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism. Mofid MR; Finking R; Essen LO; Marahiel MA Biochemistry; 2004 Apr; 43(14):4128-36. PubMed ID: 15065855 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. Reuter K; Mofid MR; Marahiel MA; Ficner R EMBO J; 1999 Dec; 18(23):6823-31. PubMed ID: 10581256 [TBL] [Abstract][Full Text] [Related]
12. Gene cloning, expression and functional characterization of a phosphopantetheinyl transferase from Vibrio anguillarum serotype O1. Liu Q; Ma Y; Zhou L; Zhang Y Arch Microbiol; 2005 Jan; 183(1):37-44. PubMed ID: 15551118 [TBL] [Abstract][Full Text] [Related]
13. Phagemid encoded small molecules for high throughput screening of chemical libraries. Yin J; Liu F; Schinke M; Daly C; Walsh CT J Am Chem Soc; 2004 Oct; 126(42):13570-1. PubMed ID: 15493886 [TBL] [Abstract][Full Text] [Related]
14. Phage selection assisted by Sfp phosphopantetheinyl transferase-catalyzed site-specific protein labeling. Zhao B; Zhang K; Bhuripanyo K; Wang Y; Zhou H; Zhang M; Yin J Methods Mol Biol; 2015; 1266():161-70. PubMed ID: 25560074 [TBL] [Abstract][Full Text] [Related]
15. Recognition of hybrid peptidyl carrier proteins/acyl carrier proteins in nonribosomal peptide synthetase modules by the 4'-phosphopantetheinyl transferases AcpS and Sfp. Mofid MR; Finking R; Marahiel MA J Biol Chem; 2002 May; 277(19):17023-31. PubMed ID: 11867633 [TBL] [Abstract][Full Text] [Related]
16. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling. Yin J; Lin AJ; Buckett PD; Wessling-Resnick M; Golan DE; Walsh CT Chem Biol; 2005 Sep; 12(9):999-1006. PubMed ID: 16183024 [TBL] [Abstract][Full Text] [Related]
17. Site-selective immobilisation of functional enzymes on to polystyrene nanoparticles. Wong LS; Okrasa K; Micklefield J Org Biomol Chem; 2010 Feb; 8(4):782-7. PubMed ID: 20135034 [TBL] [Abstract][Full Text] [Related]
18. Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. Sieber SA; Walsh CT; Marahiel MA J Am Chem Soc; 2003 Sep; 125(36):10862-6. PubMed ID: 12952465 [TBL] [Abstract][Full Text] [Related]
19. Two functionally redundant Sfp-type 4'-phosphopantetheinyl transferases differentially activate biosynthetic pathways in Myxococcus xanthus. Meiser P; Müller R Chembiochem; 2008 Jul; 9(10):1549-53. PubMed ID: 18506874 [No Abstract] [Full Text] [Related]
20. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase. Sunbul M; Marshall NJ; Zou Y; Zhang K; Yin J J Mol Biol; 2009 Apr; 387(4):883-98. PubMed ID: 19340948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]