These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17406252)

  • 1. A method for C-terminal sequence analysis in the proteomic era (proteins cleaved with cyanogen bromide).
    Samyn B; Sergeant K; Van Beeumen J
    Nat Protoc; 2006; 1(1):318-23. PubMed ID: 17406252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal sequence analysis of 2DE-separated proteins.
    Samyn B; Sergeant K; Van Beeumen J
    Methods Mol Biol; 2009; 519():469-82. PubMed ID: 19381603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications.
    Fagerquist CK; Bates AH; Heath S; King BC; Garbus BR; Harden LA; Miller WG
    J Proteome Res; 2006 Oct; 5(10):2527-38. PubMed ID: 17022624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid sequence determination of protein biomarkers of Campylobacter upsaliensis and C. helveticus by "composite" sequence proteomic analysis.
    Fagerquist CK
    J Proteome Res; 2007 Jul; 6(7):2539-49. PubMed ID: 17508732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry.
    Hardouin J
    Mass Spectrom Rev; 2007; 26(5):672-82. PubMed ID: 17492750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for C-terminal sequence analysis in the proteomic era.
    Samyn B; Sergeant K; Castanheira P; Faro C; Van Beeumen J
    Nat Methods; 2005 Mar; 2(3):193-200. PubMed ID: 15782188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T3-sequencing: targeted characterization of the N- and C-termini of undigested proteins by mass spectrometry.
    Suckau D; Resemann A
    Anal Chem; 2003 Nov; 75(21):5817-24. PubMed ID: 14588022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometric analysis of cyanogen bromide fragments of integral membrane proteins at the picomole level: application to rhodopsin.
    Kraft P; Mills J; Dratz E
    Anal Biochem; 2001 May; 292(1):76-86. PubMed ID: 11319820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-terminal ladder sequencing of peptides using an alternative nucleophile in carboxypeptidase Y digests.
    Hamberg A; Kempka M; Sjödahl J; Roeraade J; Hult K
    Anal Biochem; 2006 Oct; 357(2):167-72. PubMed ID: 16930522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new chemical approach to differentiate carboxy terminal peptide fragments in cyanogen bromide digests of proteins.
    Moerman PP; Sergeant K; Debyser G; Devreese B; Samyn B
    J Proteomics; 2010 Jun; 73(8):1454-60. PubMed ID: 20153848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite sequence proteomic analysis of protein biomarkers of Campylobacter coli, C. lari and C. concisus for bacterial identification.
    Fagerquist CK; Yee E; Miller WG
    Analyst; 2007 Oct; 132(10):1010-23. PubMed ID: 17893805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal proteomics: N- and C-terminal analyses for high-fidelity identification of proteins using MS.
    Nakazawa T; Yamaguchi M; Okamura TA; Ando E; Nishimura O; Tsunasawa S
    Proteomics; 2008 Feb; 8(4):673-85. PubMed ID: 18214847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for rapidly confirming protein N-terminal sequences by matrix-assisted laser desorption/ionization mass spectrometry.
    Zhou C; Zhang Y; Qin P; Liu X; Zhao L; Yang S; Cai Y; Qian X
    Rapid Commun Mass Spectrom; 2006; 20(19):2878-84. PubMed ID: 16941722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of human tear proteome using multiple proteomic analysis techniques.
    Li N; Wang N; Zheng J; Liu XM; Lever OW; Erickson PM; Li L
    J Proteome Res; 2005; 4(6):2052-61. PubMed ID: 16335950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation and glycosylation of bovine lens MP20.
    Ervin LA; Ball LE; Crouch RK; Schey KL
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):627-35. PubMed ID: 15671292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) N-terminal sequencing of proteins and proteolytic cleavage sites by quantitative mass spectrometry.
    Doucet A; Overall CM
    Methods Enzymol; 2011; 501():275-93. PubMed ID: 22078539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic identification of technologically modified proteins in malt by combination of protein fractionation using convective interaction media and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Bobalova J; Chmelik J
    J Chromatogr A; 2007 Sep; 1163(1-2):80-5. PubMed ID: 17586515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry for protein identification and the study of post translational modifications.
    Salzano AM; Crescenzi M
    Ann Ist Super Sanita; 2005; 41(4):443-50. PubMed ID: 16569912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of high molecular mass proteins larger than 150 kDa using cyanogen bromide cleavage and conventional 2-DE.
    Morla A; Poirier F; Pons S; Beaulieu C; Charrier JP; Ataman-Onal Y; Gléhen O; Jolivet M; Choquet-Kastylevsky G
    Electrophoresis; 2008 Nov; 29(20):4158-68. PubMed ID: 18924100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development.
    Wang BC; Wang HX; Feng JX; Meng DZ; Qu LJ; Zhu YX
    Proteomics; 2006 Apr; 6(8):2555-63. PubMed ID: 16548064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.