These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17406296)

  • 21. Dipolar chemical shift correlation spectroscopy for homonuclear carbon distance measurements in proteins in the solid state: application to structure determination and refinement.
    Peng X; Libich D; Janik R; Harauz G; Ladizhansky V
    J Am Chem Soc; 2008 Jan; 130(1):359-69. PubMed ID: 18072776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR analysis of viral protein structures.
    Dingley AJ; Lorenzen I; Grötzinger J
    Methods Mol Biol; 2008; 451():441-62. PubMed ID: 18370273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macromolecular NMR spectroscopy for the non-spectroscopist.
    Kwan AH; Mobli M; Gooley PR; King GF; Mackay JP
    FEBS J; 2011 Mar; 278(5):687-703. PubMed ID: 21214860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple method to measure protein side-chain mobility using NMR chemical shifts.
    Berjanskii MV; Wishart DS
    J Am Chem Soc; 2013 Oct; 135(39):14536-9. PubMed ID: 24032347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct 13C-detection for carbonyl relaxation studies of protein dynamics.
    Pasat G; Zintsmaster JS; Peng JW
    J Magn Reson; 2008 Aug; 193(2):226-32. PubMed ID: 18514001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear magnetic resonance-based modeling and refinement of protein three-dimensional structures and their complexes.
    Fuentes G; van Dijk AD; Bonvin AM
    Methods Mol Biol; 2008; 443():229-55. PubMed ID: 18446291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting NMR relaxation rates in anisotropically tumbling proteins through networks of coupled rotators.
    Nodet G; Abergel D; Bodenhausen G
    Chemphyschem; 2008 Mar; 9(4):625-33. PubMed ID: 18324719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation.
    Smith SG; Goodman JM
    J Org Chem; 2009 Jun; 74(12):4597-607. PubMed ID: 19459674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast and accurate predictions of protein NMR chemical shifts from interatomic distances.
    Kohlhoff KJ; Robustelli P; Cavalli A; Salvatella X; Vendruscolo M
    J Am Chem Soc; 2009 Oct; 131(39):13894-5. PubMed ID: 19739624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations.
    Sklenak S; Dedecek J; Li C; Wichterlová B; Gábová V; Sierka M; Sauer J
    Phys Chem Chem Phys; 2009 Feb; 11(8):1237-47. PubMed ID: 19209368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculating protein structures from NMR data.
    Güntert P
    Methods Mol Biol; 1997; 60():157-94. PubMed ID: 9276248
    [No Abstract]   [Full Text] [Related]  

  • 32. Structural study of Ac-Phe-[Orn-Pro-dCha-Trp-Arg], a potent C5a receptor antagonist, by NMR.
    Zhang L; Mallik B; Morikis D
    Biopolymers; 2008; 90(6):803-15. PubMed ID: 18846566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting conformational entropy of bond vectors in proteins by networks of coupled rotators.
    Dhulesia A; Bodenhausen G; Abergel D
    J Chem Phys; 2008 Sep; 129(9):095107. PubMed ID: 19044895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.
    Isley WC; Urick AK; Pomerantz WC; Cramer CJ
    Mol Pharm; 2016 Jul; 13(7):2376-86. PubMed ID: 27218275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid-state NMR on a type III antifreeze protein in the presence of ice.
    Siemer AB; McDermott AE
    J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the NMR spectra of nucleotides by DFT calculations: cyclic uridine monophosphate.
    Bagno A; Rastrelli F; Saielli G
    Magn Reson Chem; 2008 Jun; 46(6):518-24. PubMed ID: 18327890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microgram-scale protein structure determination by NMR.
    Aramini JM; Rossi P; Anklin C; Xiao R; Montelione GT
    Nat Methods; 2007 Jun; 4(6):491-3. PubMed ID: 17496898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution.
    O'Hare B; Benesi AJ; Showalter SA
    J Magn Reson; 2009 Oct; 200(2):354-8. PubMed ID: 19648037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein structure calculation from NMR data.
    Mal TK; Bagby S; Ikura M
    Methods Mol Biol; 2002; 173():267-83. PubMed ID: 11859768
    [No Abstract]   [Full Text] [Related]  

  • 40. Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis.
    Modig K; Jürgensen VW; Lindorff-Larsen K; Fieber W; Bohr HG; Poulsen FM
    FEBS Lett; 2007 Oct; 581(25):4965-71. PubMed ID: 17910956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.