These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 17406489)
1. Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap screen. Lee SJ; Kim BD; Rose JK Nat Protoc; 2006; 1(5):2439-47. PubMed ID: 17406489 [TBL] [Abstract][Full Text] [Related]
2. A yeast secretion trap assay for identification of secreted proteins from eukaryotic phytopathogens and their plant hosts. Lee SJ; Rose JK Methods Mol Biol; 2012; 835():519-30. PubMed ID: 22183675 [TBL] [Abstract][Full Text] [Related]
3. E. coli selection of human genes encoding secreted and membrane proteins based on cDNA fusions to a leaderless beta-lactamase reporter. Tan R; Jiang X; Jackson A; Jin P; Yang J; Lee E; Duggan B; Stuve LL; Fu GK Genome Res; 2003 Aug; 13(8):1938-43. PubMed ID: 12869575 [TBL] [Abstract][Full Text] [Related]
4. [Establishment of suc2 signal sequence trap system]. Sun Q; Wang JS; Li R; Zhou P; Huang HY; Han H Yi Chuan Xue Bao; 2001; 28(4):379-84. PubMed ID: 11329881 [TBL] [Abstract][Full Text] [Related]
5. Selective identification of secreted and transmembrane breast cancer markers using Escherichia coli ampicillin secretion trap. Ferguson DA; Muenster MR; Zang Q; Spencer JA; Schageman JJ; Lian Y; Garner HR; Gaynor RB; Huff JW; Pertsemlidis A; Ashfaq R; Schorge J; Becerra C; Williams NS; Graff JM Cancer Res; 2005 Sep; 65(18):8209-17. PubMed ID: 16166296 [TBL] [Abstract][Full Text] [Related]
6. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST). Lee JM; Lee SJ; Rose JK; Yeam I; Kim BD Biochem Biophys Res Commun; 2014 Apr; 446(4):882-8. PubMed ID: 24631906 [TBL] [Abstract][Full Text] [Related]
7. Genetic and proteomic evidences support the localization of yeast enolase in the cell surface. López-Villar E; Monteoliva L; Larsen MR; Sachon E; Shabaz M; Pardo M; Pla J; Gil C; Roepstorff P; Nombela C Proteomics; 2006 Apr; 6 Suppl 1():S107-18. PubMed ID: 16544286 [TBL] [Abstract][Full Text] [Related]
8. Increasing specificity in high-throughput yeast two-hybrid experiments. Vidalain PO; Boxem M; Ge H; Li S; Vidal M Methods; 2004 Apr; 32(4):363-70. PubMed ID: 15003598 [TBL] [Abstract][Full Text] [Related]
9. The Saccharomyces cerevisiae vacuolar acid trehalase is targeted at the cell surface for its physiological function. He S; Bystricky K; Leon S; François JM; Parrou JL FEBS J; 2009 Oct; 276(19):5432-46. PubMed ID: 19703229 [TBL] [Abstract][Full Text] [Related]
10. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Diehn M; Eisen MB; Botstein D; Brown PO Nat Genet; 2000 May; 25(1):58-62. PubMed ID: 10802657 [TBL] [Abstract][Full Text] [Related]
11. Added inositol regulates invertase secretion and glucose-repressed SUC2 gene expression in Saccharomyces sp. W4. Chi Z; Ma L; Gao L; Duan X Indian J Biochem Biophys; 2007 Jun; 44(3):152-6. PubMed ID: 17650583 [TBL] [Abstract][Full Text] [Related]
12. A novel platform for the production of nonhydroxylated gelatins based on the methylotrophic yeast Hansenula polymorpha. Geerlings TH; de Boer AL; Lunenborg MG; Veenhuis M; van der Klei IJ FEMS Yeast Res; 2007 Oct; 7(7):1188-96. PubMed ID: 17655688 [TBL] [Abstract][Full Text] [Related]
14. A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Wentz AE; Shusta EV Appl Environ Microbiol; 2007 Feb; 73(4):1189-98. PubMed ID: 17189442 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the plant cell wall proteome using high-throughput screens. Lee SJ; Rose JK Methods Mol Biol; 2011; 715():255-72. PubMed ID: 21222090 [TBL] [Abstract][Full Text] [Related]
16. A yeast-based genetic screening to identify human proteins that increase homologous recombination. Collavoli A; Comelli L; Rainaldi G; Galli A FEMS Yeast Res; 2008 May; 8(3):351-61. PubMed ID: 18248415 [TBL] [Abstract][Full Text] [Related]
17. Identification of membrane-bound and secreted proteins from Echinococcus granulosus by signal sequence trap. Rosenzvit MC; Zhang W; Motazedian H; Smyth D; Pearson M; Loukas A; Jones MK; McManus DP Int J Parasitol; 2006 Jan; 36(1):123-30. PubMed ID: 16229848 [TBL] [Abstract][Full Text] [Related]
18. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae. Ito K; Sugawara T; Shiroishi M; Tokuda N; Kurokawa A; Misaka T; Makyio H; Yurugi-Kobayashi T; Shimamura T; Nomura N; Murata T; Abe K; Iwata S; Kobayashi T Biochem Biophys Res Commun; 2008 Jul; 371(4):841-5. PubMed ID: 18474222 [TBL] [Abstract][Full Text] [Related]
19. Cell-surface modification of non-GMO without chemical treatment by novel GMO-coupled and -separated cocultivation method. Miura N; Aoki W; Tokumoto N; Kuroda K; Ueda M Appl Microbiol Biotechnol; 2009 Feb; 82(2):293-301. PubMed ID: 19039583 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel mitochondrial membrane protein (Cdf 3) from Arabidopsis thaliana and its functional analysis in a yeast system. Kim KM; Jun DY; Kim SK; Kim CK; Kim BO; Kim YH; Park W; Sohn JK; Hirata A; Kawai-Yamada M; Uchimiya H; Kim DH; Sul IW J Microbiol Biotechnol; 2007 Jun; 17(6):891-6. PubMed ID: 18050905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]