These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 17406545)
1. Synthesis of a biocleavable polyrotaxane-plasmid DNA (pDNA) polyplex and its use for the rapid nonviral delivery of pDNA to cell nuclei. Yamashita A; Yui N; Ooya T; Kano A; Maruyama A; Akita H; Kogure K; Harashima H Nat Protoc; 2006; 1(6):2861-9. PubMed ID: 17406545 [TBL] [Abstract][Full Text] [Related]
2. Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. Ooya T; Choi HS; Yamashita A; Yui N; Sugaya Y; Kano A; Maruyama A; Akita H; Ito R; Kogure K; Harashima H J Am Chem Soc; 2006 Mar; 128(12):3852-3. PubMed ID: 16551060 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes. Yamashita A; Kanda D; Katoono R; Yui N; Ooya T; Maruyama A; Akita H; Kogure K; Harashima H J Control Release; 2008 Oct; 131(2):137-44. PubMed ID: 18700157 [TBL] [Abstract][Full Text] [Related]
4. One-pot synthesis of a polyrotaxane via selective threading of a PEI-b-PEG-b-PEI copolymer. Choi HS; Ooya T; Yui N Macromol Biosci; 2006 Jun; 6(6):420-4. PubMed ID: 16761273 [TBL] [Abstract][Full Text] [Related]
5. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing alphavbeta3 and alphavbeta5 integrins. Oba M; Fukushima S; Kanayama N; Aoyagi K; Nishiyama N; Koyama H; Kataoka K Bioconjug Chem; 2007; 18(5):1415-23. PubMed ID: 17595054 [TBL] [Abstract][Full Text] [Related]
7. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. Takae S; Miyata K; Oba M; Ishii T; Nishiyama N; Itaka K; Yamasaki Y; Koyama H; Kataoka K J Am Chem Soc; 2008 May; 130(18):6001-9. PubMed ID: 18396871 [TBL] [Abstract][Full Text] [Related]
8. The synthesis of a multiblock osteotropic polyrotaxane by copper(I)-catalyzed huisgen 1,3-dipolar cycloaddition. Hein CD; Liu XM; Chen F; Cullen DM; Wang D Macromol Biosci; 2010 Dec; 10(12):1544-56. PubMed ID: 20954201 [TBL] [Abstract][Full Text] [Related]
9. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. Miyata K; Kakizawa Y; Nishiyama N; Harada A; Yamasaki Y; Koyama H; Kataoka K J Am Chem Soc; 2004 Mar; 126(8):2355-61. PubMed ID: 14982439 [TBL] [Abstract][Full Text] [Related]
10. Two independent ways of preparing hypercharged hydrolyzable polyaminorotaxane. Pérès B; Richardeau N; Jarroux N; Guégan P; Auvray L Biomacromolecules; 2008 Jul; 9(7):2007-13. PubMed ID: 18517251 [TBL] [Abstract][Full Text] [Related]
11. Preparation of alpha-cyclodextrin-terminated polyrotaxane consisting of beta-cyclodextrins and pluronic as a building block of a biodegradable network. Ooya T; Ito A; Yui N Macromol Biosci; 2005 May; 5(5):379-83. PubMed ID: 15895475 [TBL] [Abstract][Full Text] [Related]
12. Intranuclear fluorescence resonance energy transfer analysis of plasmid DNA decondensation from nonviral gene carriers. Matsumoto Y; Itaka K; Yamasoba T; Kataoka K J Gene Med; 2009 Jul; 11(7):615-23. PubMed ID: 19396931 [TBL] [Abstract][Full Text] [Related]
13. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells. Moffatt S; Cristiano RJ Int J Pharm; 2006 Sep; 321(1-2):143-54. PubMed ID: 16860501 [TBL] [Abstract][Full Text] [Related]
14. Tailoring the supramolecular structure of aminated polyrotaxanes toward enhanced cellular internalization. Yokoyama N; Seo JH; Tamura A; Sasaki Y; Yui N Macromol Biosci; 2014 Mar; 14(3):359-68. PubMed ID: 24634263 [TBL] [Abstract][Full Text] [Related]
15. Dilution-stable PAMAM G1-grafted polyrotaxane supermolecules deliver gene into cells through a caveolae-dependent pathway. Huang H; Cao D; Qin L; Tian S; Liang Y; Pan S; Feng M Mol Pharm; 2014 Jul; 11(7):2323-33. PubMed ID: 24957192 [TBL] [Abstract][Full Text] [Related]
16. Dual environment-responsive polyplex carriers for enhanced intracellular delivery of plasmid DNA. Sanjoh M; Miyata K; Christie RJ; Ishii T; Maeda Y; Pittella F; Hiki S; Nishiyama N; Kataoka K Biomacromolecules; 2012 Nov; 13(11):3641-9. PubMed ID: 22994314 [TBL] [Abstract][Full Text] [Related]
17. Polypseudorotaxanes of pegylated α-cyclodextrin/polyamidoamine dendrimer conjugate with cyclodextrins as a sustained release system for DNA. Motoyama K; Hayashida K; Higashi T; Arima H Bioorg Med Chem; 2012 Feb; 20(4):1425-33. PubMed ID: 22277591 [TBL] [Abstract][Full Text] [Related]
18. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. Ooya T; Eguchi M; Yui N J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461 [TBL] [Abstract][Full Text] [Related]
19. Different mechanisms for nanoparticle formation between pDNA and siRNA using polyrotaxane as the polycation. Yamada Y; Hashida M; Nomura T; Harashima H; Yamasaki Y; Kataoka K; Yamashita A; Katoono R; Yui N Chemphyschem; 2012 Apr; 13(5):1161-5. PubMed ID: 22383277 [No Abstract] [Full Text] [Related]
20. Improved cell viability of linear polyethylenimine through gamma-cyclodextrin inclusion for effective gene delivery. Yamashita A; Choi HS; Ooya T; Yui N; Akita H; Kogure K; Harashima H Chembiochem; 2006 Feb; 7(2):297-302. PubMed ID: 16408311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]