These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 17406637)
1. A real-time method of imaging glucose uptake in single, living mammalian cells. Yamada K; Saito M; Matsuoka H; Inagaki N Nat Protoc; 2007; 2(3):753-62. PubMed ID: 17406637 [TBL] [Abstract][Full Text] [Related]
2. Syntheses of 2-NBDG analogues for monitoring stereoselective uptake of D-glucose. Yamamoto T; Tanaka S; Suga S; Watanabe S; Nagatomo K; Sasaki A; Nishiuchi Y; Teshima T; Yamada K Bioorg Med Chem Lett; 2011 Jul; 21(13):4088-96. PubMed ID: 21636274 [TBL] [Abstract][Full Text] [Related]
3. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. Zou C; Wang Y; Shen Z J Biochem Biophys Methods; 2005 Sep; 64(3):207-15. PubMed ID: 16182371 [TBL] [Abstract][Full Text] [Related]
4. Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells. Etxeberria E; González P; Tomlinson P; Pozueta-Romero J J Exp Bot; 2005 Jul; 56(417):1905-12. PubMed ID: 15911561 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose, a new fluorescent derivative of glucose, for viability assessment of yeast Candida albicans. Yoshioka K; Oh KB; Saito M; Nemoto Y; Matsuoka H Appl Microbiol Biotechnol; 1996 Nov; 46(4):400-4. PubMed ID: 8987729 [TBL] [Abstract][Full Text] [Related]
6. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Yoshioka K; Takahashi H; Homma T; Saito M; Oh KB; Nemoto Y; Matsuoka H Biochim Biophys Acta; 1996 Feb; 1289(1):5-9. PubMed ID: 8605231 [TBL] [Abstract][Full Text] [Related]
7. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells. Lee HY; Lee JJ; Park J; Park SB Chemistry; 2011 Jan; 17(1):143-50. PubMed ID: 21207611 [TBL] [Abstract][Full Text] [Related]
8. Effect of drug-induced cytotoxicity on glucose uptake in Hodgkin's lymphoma cells. Banning U; Barthel H; Mauz-Körholz C; Kluge R; Körholz D; Sabri O Eur J Haematol; 2006 Aug; 77(2):102-8. PubMed ID: 16800842 [TBL] [Abstract][Full Text] [Related]
9. Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone. Román Y; Alfonso A; Louzao MC; Vieytes MR; Botana LM Pflugers Arch; 2001 Nov; 443(2):234-9. PubMed ID: 11713649 [TBL] [Abstract][Full Text] [Related]
10. Rapid viability assessment of yeast cells using vital staining with 2-NBDG, a fluorescent derivative of glucose. Oh KB; Matsuoka H Int J Food Microbiol; 2002 Jun; 76(1-2):47-53. PubMed ID: 12038577 [TBL] [Abstract][Full Text] [Related]
11. Aberrant Uptake of a Fluorescent L-Glucose Analogue (fLG) into Tumor Cells Expressing Malignant Phenotypes. Yamada K Biol Pharm Bull; 2018; 41(10):1508-1516. PubMed ID: 30270319 [TBL] [Abstract][Full Text] [Related]
12. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. O'Neil RG; Wu L; Mullani N Mol Imaging Biol; 2005; 7(6):388-92. PubMed ID: 16284704 [TBL] [Abstract][Full Text] [Related]
13. Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Yoshioka K; Saito M; Oh KB; Nemoto Y; Matsuoka H; Natsume M; Abe H Biosci Biotechnol Biochem; 1996 Nov; 60(11):1899-901. PubMed ID: 8987871 [TBL] [Abstract][Full Text] [Related]
14. Subcellular characterization of glucose uptake in coronary endothelial cells. Gaudreault N; Scriven DR; Laher I; Moore ED Microvasc Res; 2008 Jan; 75(1):73-82. PubMed ID: 17531273 [TBL] [Abstract][Full Text] [Related]
15. Uptake of a fluorescent L-glucose derivative 2-NBDLG into three-dimensionally accumulating insulinoma cells in a phloretin-sensitive manner. Sasaki A; Nagatomo K; Ono K; Yamamoto T; Otsuka Y; Teshima T; Yamada K Hum Cell; 2016 Jan; 29(1):37-45. PubMed ID: 26553070 [TBL] [Abstract][Full Text] [Related]
16. Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects. Jung DW; Ha HH; Zheng X; Chang YT; Williams DR Mol Biosyst; 2011 Feb; 7(2):346-58. PubMed ID: 20927436 [TBL] [Abstract][Full Text] [Related]
17. Ascorbic acid-dependent GLUT3 inhibition is a critical step for switching neuronal metabolism. Beltrán FA; Acuña AI; Miró MP; Angulo C; Concha II; Castro MA J Cell Physiol; 2011 Dec; 226(12):3286-94. PubMed ID: 21321936 [TBL] [Abstract][Full Text] [Related]
18. Uptake of fluorescent D- and L-glucose analogues, 2-NBDG and 2-NBDLG, into human osteosarcoma U2OS cells in a phloretin-inhibitable manner. Ogawa T; Sasaki A; Ono K; Ohshika S; Ishibashi Y; Yamada K Hum Cell; 2021 Mar; 34(2):634-643. PubMed ID: 33454890 [TBL] [Abstract][Full Text] [Related]
19. A fluorescence method for measurement of glucose transport in kidney cells. Blodgett AB; Kothinti RK; Kamyshko I; Petering DH; Kumar S; Tabatabai NM Diabetes Technol Ther; 2011 Jul; 13(7):743-51. PubMed ID: 21510766 [TBL] [Abstract][Full Text] [Related]
20. Fluorometric determination of glucose utilization in neurons in vitro and in vivo. Itoh Y; Abe T; Takaoka R; Tanahashi N J Cereb Blood Flow Metab; 2004 Sep; 24(9):993-1003. PubMed ID: 15356420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]