BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17406874)

  • 1. Interruption of pacemaker signals is mediated by GABAergic inhibition of the pacemaker nucleus in the African electric fish Gymnarchus niloticus.
    Zhang Y; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jun; 193(6):665-75. PubMed ID: 17406874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interruption of pacemaker signals by a diencephalic nucleus in the African electric fish, Gymnarchus niloticus.
    Zhang Y; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):509-21. PubMed ID: 16450119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural evidence of GABA-ergic inhibition and glutamatergic excitation in the pacemaker nucleus of the gymnotiform electric fish, Hypopomus.
    Kennedy G; Heiligenberg W
    J Comp Physiol A; 1994 Mar; 174(3):267-80. PubMed ID: 7908694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish.
    Kawasaki M; Heiligenberg W
    J Neurosci; 1990 Dec; 10(12):3896-904. PubMed ID: 1980133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus.
    Keller CH; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1991 Oct; 169(4):441-50. PubMed ID: 1685751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating.
    Kawasaki M
    J Comp Physiol A; 1994 Feb; 174(2):133-44. PubMed ID: 8145186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways.
    Metzner W
    J Neurosci; 1993 May; 13(5):1862-78. PubMed ID: 8478680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive mechanisms underlie the emission of social electric signals of submission in
    Comas V; Langevin K; Silva A; Borde M
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential output pathways for agonistic-like responses resulting from the GABA(A) blockade of the torus semicircularis dorsalis in weakly electric fish, Gymnotus carapo.
    Teixeira Duarte T; Hoffmann A; de Souza Fim Pereira A; Aparecida Lopes CorrĂȘa S
    Brain Res; 2006 May; 1092(1):117-28. PubMed ID: 16696952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus.
    Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1989 Oct; 165(6):731-41. PubMed ID: 2810147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish.
    Smith GT; Lu Y; Zakon HH
    J Comp Neurol; 2000 Jul; 423(3):427-39. PubMed ID: 10870083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.
    Curti S; Falconi A; Morales FR; Borde M
    J Neurosci; 1999 Oct; 19(20):9133-40. PubMed ID: 10516331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors.
    Spiro JE
    J Neurophysiol; 1997 Aug; 78(2):835-47. PubMed ID: 9307117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Afferent and efferent connections of the diencephalic prepacemaker nucleus in the weakly electric fish, Eigenmannia virescens: interactions between the electromotor system and the neuroendocrine axis.
    Wong CJ
    J Comp Neurol; 1997 Jun; 383(1):18-41. PubMed ID: 9184983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish, Eigenmannia.
    Keller CH; Heiligenberg W
    J Comp Physiol A; 1989 Feb; 164(5):565-76. PubMed ID: 2565397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behaviors.
    Dye J; Heiligenberg W
    J Comp Physiol A; 1987 Aug; 161(2):187-200. PubMed ID: 3625572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish.
    Kolodziejski JA; Nelson BS; Smith GT
    J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local vasotocin modulation of the pacemaker nucleus resembles distinct electric behaviors in two species of weakly electric fish.
    Perrone R; Migliaro A; Comas V; Quintana L; Borde M; Silva A
    J Physiol Paris; 2014; 108(2-3):203-12. PubMed ID: 25125289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatostatin in the prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus: evidence for a nonsynaptic function.
    Stroh T; Zupanc GK
    Brain Res; 1995 Mar; 674(1):1-14. PubMed ID: 7773675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus.
    Kawasaki M; Maler L; Rose GJ; Heiligenberg W
    J Comp Neurol; 1988 Oct; 276(1):113-31. PubMed ID: 2461396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.